org.apache.spark.sql.rapids.GpuPoissonSampler.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.12 Show documentation
Show all versions of rapids-4-spark_2.12 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.rapids
import scala.collection.mutable.ArrayBuffer
import ai.rapids.cudf.NvtxColor
import com.nvidia.spark.rapids.{GatherUtils, GpuMetric, NvtxWithMetrics}
import com.nvidia.spark.rapids.Arm.withResource
import org.apache.spark.sql.vectorized.ColumnarBatch
import org.apache.spark.util.random.PoissonSampler
class GpuPoissonSampler(fraction: Double, useGapSamplingIfPossible: Boolean,
numOutputRows: GpuMetric, numOutputBatches: GpuMetric, opTime: GpuMetric)
extends PoissonSampler[ColumnarBatch](fraction, useGapSamplingIfPossible) {
override def clone: PoissonSampler[ColumnarBatch] =
new GpuPoissonSampler(fraction, useGapSamplingIfPossible,
numOutputRows, numOutputBatches, opTime)
override def sample(batchIterator: Iterator[ColumnarBatch]): Iterator[ColumnarBatch] = {
if (fraction <= 0.0) {
Iterator.empty
} else {
batchIterator.map { columnarBatch =>
withResource(new NvtxWithMetrics("Sample Exec", NvtxColor.YELLOW, opTime)) { _ =>
withResource(columnarBatch) { cb =>
// collect sampled row idx
// samples idx in batch one by one, so it's same with CPU version
val sampledRows = sample(cb.numRows())
numOutputBatches += 1
numOutputRows += sampledRows.length
GatherUtils.gather(cb, sampledRows)
}
}
}
}
}
// collect the sampled row indexes, Note one row can be sampled multiple times
private def sample(numRows: Int): ArrayBuffer[Int] = {
val buf = new ArrayBuffer[Int]
var rowIdx = 0
while (rowIdx < numRows) {
// invoke PoissonSampler sample
val rowCount = super.sample()
if (rowCount > 0) {
var i = 0
while (i < rowCount) {
buf += rowIdx
i = i + 1
}
}
rowIdx += 1
}
buf
}
}