org.apache.spark.sql.rapids.TimeWindow.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.12 Show documentation
Show all versions of rapids-4-spark_2.12 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.rapids
import ai.rapids.cudf.ColumnVector
import com.nvidia.spark.rapids.{GpuColumnVector, GpuUnaryExpression}
import com.nvidia.spark.rapids.Arm.withResource
import org.apache.spark.sql.catalyst.expressions.{ExpectsInputTypes, Expression}
import org.apache.spark.sql.types.{AbstractDataType, DataType}
/**
* Expression used internally to convert the TimestampType to Long and back without losing
* precision, i.e. in microseconds. Used in time windowing.
*/
case class GpuPreciseTimestampConversion(
child: Expression,
fromType: DataType,
toType: DataType) extends GpuUnaryExpression with ExpectsInputTypes {
override def inputTypes: Seq[AbstractDataType] = Seq(fromType)
override def dataType: DataType = toType
override protected def doColumnar(input: GpuColumnVector): ColumnVector = {
val outDType = GpuColumnVector.getNonNestedRapidsType(toType)
withResource(input.getBase.bitCastTo(outDType)) { bitCast =>
bitCast.copyToColumnVector()
}
}
}