All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.spark.sql.rapids.NormalizeFloatingNumbers.scala Maven / Gradle / Ivy

There is a newer version: 24.10.1
Show newest version
/*
 * Copyright (c) 2019-2020, NVIDIA CORPORATION.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.rapids

import ai.rapids.cudf.ColumnVector
import com.nvidia.spark.rapids.{GpuColumnVector, GpuUnaryExpression}

import org.apache.spark.sql.catalyst.expressions.{ExpectsInputTypes, Expression}
import org.apache.spark.sql.types.{AbstractDataType, DataType, DoubleType, FloatType, TypeCollection}

// This will ensure that:
//  - input NaNs become Float.NaN, or Double.NaN
//  - that -0.0f and -0.0d becomes 0.0f, and 0.0d respectively
// TODO: need coalesce as a feature request in cudf
case class GpuNormalizeNaNAndZero(child: Expression) extends GpuUnaryExpression
    with ExpectsInputTypes {

  override def dataType: DataType = child.dataType

  override def inputTypes: Seq[AbstractDataType] = Seq(TypeCollection(FloatType, DoubleType))

  override def doColumnar(input: GpuColumnVector): ColumnVector =
    input.getBase.normalizeNANsAndZeros()
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy