com.nvidia.spark.rapids.ColumnarOutputWriter.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids
import java.io.OutputStream
import scala.collection.mutable
import ai.rapids.cudf.{HostBufferConsumer, HostMemoryBuffer, NvtxColor, NvtxRange, TableWriter}
import com.nvidia.spark.Retryable
import com.nvidia.spark.rapids.Arm.{closeOnExcept, withResource}
import com.nvidia.spark.rapids.RapidsPluginImplicits._
import com.nvidia.spark.rapids.RmmRapidsRetryIterator.{splitSpillableInHalfByRows, withRestoreOnRetry, withRetry, withRetryNoSplit}
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FSDataOutputStream, Path}
import org.apache.hadoop.mapreduce.TaskAttemptContext
import org.apache.spark.TaskContext
import org.apache.spark.sql.rapids.{ColumnarWriteTaskStatsTracker, GpuWriteTaskStatsTracker}
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.vectorized.ColumnarBatch
/**
* A factory that produces [[ColumnarOutputWriter]]s. A new [[ColumnarOutputWriterFactory]] is
* created on the driver side, and then gets serialized to executor side to create
* [[ColumnarOutputWriter]]s. This is the columnar version of
* `org.apache.spark.sql.execution.datasources.OutputWriterFactory`.
*/
abstract class ColumnarOutputWriterFactory extends Serializable {
/** Returns the default partition flush size in bytes, format specific */
def partitionFlushSize(context: TaskAttemptContext): Long = 128L * 1024L * 1024L // 128M
/** Returns the file extension to be used when writing files out. */
def getFileExtension(context: TaskAttemptContext): String
/**
* When writing to a `org.apache.spark.sql.execution.datasources.HadoopFsRelation`, this method
* gets called by each task on executor side to instantiate new [[ColumnarOutputWriter]]s.
*
* @param path Path to write the file.
* @param dataSchema Schema of the columnar data to be written. Partition columns are not
* included in the schema if the relation being written is partitioned.
* @param context The Hadoop MapReduce task context.
*/
def newInstance(
path: String,
dataSchema: StructType,
context: TaskAttemptContext): ColumnarOutputWriter
}
/**
* This is used to write columnar data to a file system. Subclasses of [[ColumnarOutputWriter]]
* must provide a zero-argument constructor. This is the columnar version of
* `org.apache.spark.sql.execution.datasources.OutputWriter`.
*/
abstract class ColumnarOutputWriter(context: TaskAttemptContext,
dataSchema: StructType,
rangeName: String,
includeRetry: Boolean) extends HostBufferConsumer {
protected val tableWriter: TableWriter
protected val conf: Configuration = context.getConfiguration
// This is implemented as a method to make it easier to subclass
// ColumnarOutputWriter in the tests, and override this behavior.
protected def getOutputStream: FSDataOutputStream = {
val hadoopPath = new Path(path)
val fs = hadoopPath.getFileSystem(conf)
fs.create(hadoopPath, false)
}
protected val outputStream: FSDataOutputStream = getOutputStream
private[this] val tempBuffer = new Array[Byte](128 * 1024)
private[this] var anythingWritten = false
private[this] val buffers = mutable.Queue[(HostMemoryBuffer, Long)]()
override
def handleBuffer(buffer: HostMemoryBuffer, len: Long): Unit =
buffers += Tuple2(buffer, len)
def writeBufferedData(): Unit = {
ColumnarOutputWriter.writeBufferedData(buffers, tempBuffer, outputStream)
}
def dropBufferedData(): Unit = buffers.dequeueAll {
case (buffer, _) =>
buffer.close()
true
}
private[this] def updateStatistics(
writeStartTime: Long,
gpuTime: Long,
statsTrackers: Seq[ColumnarWriteTaskStatsTracker]): Unit = {
// Update statistics
val writeTime = System.nanoTime - writeStartTime - gpuTime
statsTrackers.foreach {
case gpuTracker: GpuWriteTaskStatsTracker =>
gpuTracker.addWriteTime(writeTime)
gpuTracker.addGpuTime(gpuTime)
case _ =>
}
}
protected def throwIfRebaseNeededInExceptionMode(batch: ColumnarBatch): Unit = {
// NOOP for now, but allows a child to override this
}
/**
* Persists a columnar batch. Invoked on the executor side. When writing to dynamically
* partitioned tables, dynamic partition columns are not included in columns to be written.
*
* NOTE: This method will close `spillableBatch`. We do this because we want
* to free GPU memory after the GPU has finished encoding the data but before
* it is written to the distributed filesystem. The GPU semaphore is released
* during the distributed filesystem transfer to allow other tasks to start/continue
* GPU processing.
*/
def writeSpillableAndClose(
spillableBatch: SpillableColumnarBatch,
statsTrackers: Seq[ColumnarWriteTaskStatsTracker]): Long = {
val writeStartTime = System.nanoTime
closeOnExcept(spillableBatch) { _ =>
val cb = withRetryNoSplit[ColumnarBatch] {
spillableBatch.getColumnarBatch()
}
// run pre-flight checks and update stats
withResource(cb) { _ =>
throwIfRebaseNeededInExceptionMode(cb)
// NOTE: it is imperative that `newBatch` is not in a retry block.
// Otherwise it WILL corrupt writers that generate metadata in this method (like delta)
statsTrackers.foreach(_.newBatch(path(), cb))
}
}
val gpuTime = if (includeRetry) {
//TODO: we should really apply the transformations to cast timestamps
// to the expected types before spilling but we need a SpillableTable
// rather than a SpillableColumnBatch to be able to do that
// See https://github.com/NVIDIA/spark-rapids/issues/8262
withRetry(spillableBatch, splitSpillableInHalfByRows) { attempt =>
withRestoreOnRetry(checkpointRestore) {
bufferBatchAndClose(attempt.getColumnarBatch())
}
}.sum
} else {
withResource(spillableBatch) { _ =>
bufferBatchAndClose(spillableBatch.getColumnarBatch())
}
}
// we successfully buffered to host memory, release the semaphore and write
// the buffered data to the FS
GpuSemaphore.releaseIfNecessary(TaskContext.get)
writeBufferedData()
updateStatistics(writeStartTime, gpuTime, statsTrackers)
spillableBatch.numRows()
}
// protected for testing
protected[this] def bufferBatchAndClose(batch: ColumnarBatch): Long = {
val startTimestamp = System.nanoTime
withResource(new NvtxRange(s"GPU $rangeName write", NvtxColor.BLUE)) { _ =>
withResource(transformAndClose(batch)) { maybeTransformed =>
encodeAndBufferToHost(maybeTransformed)
}
}
// time spent on GPU encoding to the host sink
System.nanoTime - startTimestamp
}
/** Apply any necessary casts before writing batch out */
def transformAndClose(cb: ColumnarBatch): ColumnarBatch = cb
private val checkpointRestore = new Retryable {
override def checkpoint(): Unit = ()
override def restore(): Unit = dropBufferedData()
}
private def encodeAndBufferToHost(batch: ColumnarBatch): Unit = {
withResource(GpuColumnVector.from(batch)) { table =>
// `anythingWritten` is set here as an indication that there was data at all
// to write, even if the `tableWriter.write` method fails. If we fail to write
// and the task fails, any output is going to be discarded anyway, so no data
// corruption to worry about. Otherwise, we should retry (OOM case).
// If we have nothing to write, we won't flip this flag to true and we will
// buffer an empty batch on close() to work around issues in cuDF
// where corrupt files can be written if nothing is encoded via the writer.
anythingWritten = true
tableWriter.write(table)
}
}
/**
* Closes the [[ColumnarOutputWriter]]. Invoked on the executor side after all columnar batches
* are persisted, before the task output is committed.
*/
def close(): Unit = {
if (!anythingWritten) {
// This prevents writing out bad files
bufferBatchAndClose(GpuColumnVector.emptyBatch(dataSchema))
}
tableWriter.close()
GpuSemaphore.releaseIfNecessary(TaskContext.get())
writeBufferedData()
outputStream.close()
}
/**
* The file path to write. Invoked on the executor side.
*/
def path(): String
}
object ColumnarOutputWriter {
// write buffers to outputStream via tempBuffer and close buffers
def writeBufferedData(buffers: mutable.Queue[(HostMemoryBuffer, Long)],
tempBuffer: Array[Byte], outputStream: OutputStream): Unit = {
val toProcess = buffers.dequeueAll(_ => true)
try {
toProcess.foreach { case (buffer, len) =>
var offset: Long = 0
var left = len
while (left > 0) {
val toCopy = math.min(tempBuffer.length, left).toInt
buffer.getBytes(tempBuffer, 0, offset, toCopy)
outputStream.write(tempBuffer, 0, toCopy)
left = left - toCopy
offset = offset + toCopy
}
}
} finally {
toProcess.map { case (buffer, _) => buffer }.safeClose()
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy