com.nvidia.spark.rapids.GpuColumnarBatchSerializer.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids
import java.io._
import java.nio.ByteBuffer
import scala.collection.mutable.ArrayBuffer
import scala.reflect.ClassTag
import ai.rapids.cudf.{HostColumnVector, HostMemoryBuffer, JCudfSerialization, NvtxColor, NvtxRange}
import ai.rapids.cudf.JCudfSerialization.SerializedTableHeader
import com.nvidia.spark.rapids.Arm.{closeOnExcept, withResource}
import com.nvidia.spark.rapids.RapidsPluginImplicits._
import com.nvidia.spark.rapids.ScalableTaskCompletion.onTaskCompletion
import org.apache.spark.TaskContext
import org.apache.spark.serializer.{DeserializationStream, SerializationStream, Serializer, SerializerInstance}
import org.apache.spark.sql.types.NullType
import org.apache.spark.sql.vectorized.ColumnarBatch
class SerializedBatchIterator(dIn: DataInputStream)
extends Iterator[(Int, ColumnarBatch)] {
private[this] var nextHeader: Option[SerializedTableHeader] = None
private[this] var toBeReturned: Option[ColumnarBatch] = None
private[this] var streamClosed: Boolean = false
// Don't install the callback if in a unit test
Option(TaskContext.get()).foreach { tc =>
onTaskCompletion(tc) {
toBeReturned.foreach(_.close())
toBeReturned = None
dIn.close()
}
}
def tryReadNextHeader(): Option[Long] = {
if (streamClosed){
None
} else {
if (nextHeader.isEmpty) {
withResource(new NvtxRange("Read Header", NvtxColor.YELLOW)) { _ =>
val header = new SerializedTableHeader(dIn)
if (header.wasInitialized) {
nextHeader = Some(header)
} else {
dIn.close()
streamClosed = true
nextHeader = None
}
}
}
nextHeader.map(_.getDataLen)
}
}
def tryReadNext(): Option[ColumnarBatch] = {
if (nextHeader.isEmpty) {
None
} else {
withResource(new NvtxRange("Read Batch", NvtxColor.YELLOW)) { _ =>
val header = nextHeader.get
if (header.getNumColumns > 0) {
// This buffer will later be concatenated into another host buffer before being
// sent to the GPU, so no need to use pinned memory for these buffers.
closeOnExcept(
HostMemoryBuffer.allocate(header.getDataLen, false)) { hostBuffer =>
JCudfSerialization.readTableIntoBuffer(dIn, header, hostBuffer)
Some(SerializedTableColumn.from(header, hostBuffer))
}
} else {
Some(SerializedTableColumn.from(header))
}
}
}
}
override def hasNext: Boolean = {
tryReadNextHeader()
nextHeader.isDefined
}
override def next(): (Int, ColumnarBatch) = {
if (toBeReturned.isEmpty) {
tryReadNextHeader()
toBeReturned = tryReadNext()
if (nextHeader.isEmpty || toBeReturned.isEmpty) {
throw new NoSuchElementException("Walked off of the end...")
}
}
val ret = toBeReturned.get
toBeReturned = None
nextHeader = None
(0, ret)
}
}
/**
* Serializer for serializing `ColumnarBatch`s for use during normal shuffle.
*
* The serialization write path takes the cudf `Table` that is described by the `ColumnarBatch`
* and uses cudf APIs to serialize the data into a sequence of bytes on the host. The data is
* returned to the Spark shuffle code where it is compressed by the CPU and written to disk.
*
* The serialization read path is notably different. The sequence of serialized bytes IS NOT
* deserialized into a cudf `Table` but rather tracked in host memory by a `ColumnarBatch`
* that contains a [[SerializedTableColumn]]. During query planning, each GPU columnar shuffle
* exchange is followed by a [[GpuShuffleCoalesceExec]] that expects to receive only these
* custom batches of [[SerializedTableColumn]]. [[GpuShuffleCoalesceExec]] coalesces the smaller
* shuffle partitions into larger tables before placing them on the GPU for further processing.
*
* @note The RAPIDS shuffle does not use this code.
*/
class GpuColumnarBatchSerializer(dataSize: GpuMetric)
extends Serializer with Serializable {
override def newInstance(): SerializerInstance =
new GpuColumnarBatchSerializerInstance(dataSize)
override def supportsRelocationOfSerializedObjects: Boolean = true
}
private class GpuColumnarBatchSerializerInstance(dataSize: GpuMetric) extends SerializerInstance {
override def serializeStream(out: OutputStream): SerializationStream = new SerializationStream {
private[this] val dOut: DataOutputStream =
new DataOutputStream(new BufferedOutputStream(out))
override def writeValue[T: ClassTag](value: T): SerializationStream = {
val batch = value.asInstanceOf[ColumnarBatch]
val numColumns = batch.numCols()
val columns: Array[HostColumnVector] = new Array(numColumns)
val toClose = new ArrayBuffer[AutoCloseable]()
try {
var startRow = 0
val numRows = batch.numRows()
if (batch.numCols() > 0) {
val firstCol = batch.column(0)
if (firstCol.isInstanceOf[SlicedGpuColumnVector]) {
// We don't have control over ColumnarBatch to put in the slice, so we have to do it
// for each column. In this case we are using the first column.
startRow = firstCol.asInstanceOf[SlicedGpuColumnVector].getStart
for (i <- 0 until numColumns) {
columns(i) = batch.column(i).asInstanceOf[SlicedGpuColumnVector].getBase
}
} else {
for (i <- 0 until numColumns) {
batch.column(i) match {
case gpu: GpuColumnVector =>
val cpu = gpu.copyToHost()
toClose += cpu
columns(i) = cpu.getBase
case cpu: RapidsHostColumnVector =>
columns(i) = cpu.getBase
}
}
}
dataSize += JCudfSerialization.getSerializedSizeInBytes(columns, startRow, numRows)
val range = new NvtxRange("Serialize Batch", NvtxColor.YELLOW)
try {
JCudfSerialization.writeToStream(columns, dOut, startRow, numRows)
} finally {
range.close()
}
} else {
val range = new NvtxRange("Serialize Row Only Batch", NvtxColor.YELLOW)
try {
JCudfSerialization.writeRowsToStream(dOut, numRows)
} finally {
range.close()
}
}
} finally {
toClose.safeClose()
}
this
}
override def writeKey[T: ClassTag](key: T): SerializationStream = {
// The key is only needed on the map side when computing partition ids. It does not need to
// be shuffled.
assert(null == key || key.isInstanceOf[Int])
this
}
override def writeAll[T: ClassTag](iter: Iterator[T]): SerializationStream = {
// This method is never called by shuffle code.
throw new UnsupportedOperationException
}
override def writeObject[T: ClassTag](t: T): SerializationStream = {
// This method is never called by shuffle code.
throw new UnsupportedOperationException
}
override def flush(): Unit = {
dOut.flush()
}
override def close(): Unit = {
dOut.close()
}
}
override def deserializeStream(in: InputStream): DeserializationStream = {
new DeserializationStream {
private[this] val dIn: DataInputStream = new DataInputStream(new BufferedInputStream(in))
override def asKeyValueIterator: Iterator[(Int, ColumnarBatch)] = {
new SerializedBatchIterator(dIn)
}
override def asIterator: Iterator[Any] = {
// This method is never called by shuffle code.
throw new UnsupportedOperationException
}
override def readKey[T]()(implicit classType: ClassTag[T]): T = {
// We skipped serialization of the key in writeKey(), so just return a dummy value since
// this is going to be discarded anyways.
null.asInstanceOf[T]
}
override def readValue[T]()(implicit classType: ClassTag[T]): T = {
// This method should never be called by shuffle code.
throw new UnsupportedOperationException
}
override def readObject[T]()(implicit classType: ClassTag[T]): T = {
// This method is never called by shuffle code.
throw new UnsupportedOperationException
}
override def close(): Unit = {
dIn.close()
}
}
}
// These methods are never called by shuffle code.
override def serialize[T: ClassTag](t: T): ByteBuffer = throw new UnsupportedOperationException
override def deserialize[T: ClassTag](bytes: ByteBuffer): T =
throw new UnsupportedOperationException
override def deserialize[T: ClassTag](bytes: ByteBuffer, loader: ClassLoader): T =
throw new UnsupportedOperationException
}
/**
* A special `ColumnVector` that describes a serialized table read from shuffle.
* This appears in a `ColumnarBatch` to pass serialized tables to [[GpuShuffleCoalesceExec]]
* which should always appear in the query plan immediately after a shuffle.
*/
class SerializedTableColumn(
val header: SerializedTableHeader,
val hostBuffer: HostMemoryBuffer) extends GpuColumnVectorBase(NullType) {
override def close(): Unit = {
if (hostBuffer != null) {
hostBuffer.close()
}
}
override def hasNull: Boolean = throw new IllegalStateException("should not be called")
override def numNulls(): Int = throw new IllegalStateException("should not be called")
}
object SerializedTableColumn {
/**
* Build a `ColumnarBatch` consisting of a single [[SerializedTableColumn]] describing
* the specified serialized table.
*
* @param header header for the serialized table
* @param hostBuffer host buffer containing the table data
* @return columnar batch to be passed to [[GpuShuffleCoalesceExec]]
*/
def from(
header: SerializedTableHeader,
hostBuffer: HostMemoryBuffer = null): ColumnarBatch = {
val column = new SerializedTableColumn(header, hostBuffer)
new ColumnarBatch(Array(column), header.getNumRows)
}
def getMemoryUsed(batch: ColumnarBatch): Long = {
var sum: Long = 0
if (batch.numCols == 1) {
val cv = batch.column(0)
cv match {
case serializedTableColumn: SerializedTableColumn
if serializedTableColumn.hostBuffer != null =>
sum += serializedTableColumn.hostBuffer.getLength
case _ =>
}
}
sum
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy