com.nvidia.spark.rapids.GpuMapUtils.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2021-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids
import java.util.Optional
import ai.rapids.cudf.{ColumnVector, ColumnView, DType}
import com.nvidia.spark.rapids.Arm.withResource
import com.nvidia.spark.rapids.RapidsPluginImplicits.AutoCloseableColumn
import org.apache.spark.sql.catalyst.expressions.{Expression, MapFromArrays}
import org.apache.spark.sql.catalyst.trees.Origin
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.rapids.GpuMapFromArrays
import org.apache.spark.sql.rapids.shims.RapidsErrorUtils
import org.apache.spark.sql.types.DataType
/**
* Provide a set of APIs to manipulate map columns in common ways. CUDF does not officially support
* maps so we store it as a list of key/value structs.
*/
object GpuMapUtils {
val KEY_INDEX: Int = 0
val VALUE_INDEX: Int = 1
private[this] def pullChildOutAsListView(input: ColumnView, index: Int): ColumnView = {
withResource(input.getChildColumnView(0)) { structView =>
withResource(structView.getChildColumnView(index)) { keyView =>
GpuListUtils.replaceListDataColumnAsView(input, keyView)
}
}
}
def getMapValueOrThrow(
map: ColumnVector,
indices: ColumnVector,
dtype: DataType,
origin: Origin): ColumnVector = {
withResource(map.getMapKeyExistence(indices)) { keyExists =>
withResource(keyExists.all()) { exist =>
if (exist.isValid && exist.getBoolean) {
map.getMapValue(indices)
} else {
val firstFalseKey = getFirstFalseKey(indices, keyExists)
throw RapidsErrorUtils.mapKeyNotExistError(firstFalseKey, dtype, origin)
}
}
}
}
private def getFirstFalseKey(indices: ColumnVector, keyExists: ColumnVector): String = {
withResource(new ai.rapids.cudf.Table(Array(indices, keyExists):_*)) { table =>
withResource(keyExists.not()) { keyNotExist =>
withResource(table.filter(keyNotExist)) { tableWithBadKeys =>
val badKeys = tableWithBadKeys.getColumn(0)
withResource(badKeys.getScalarElement(0)) { firstBadKey =>
val key = GpuScalar.extract(firstBadKey)
if (key != null) {
key.toString
} else {
"null"
}
}
}
}
}
}
/**
* Get the keys from a map column as a list.
* @param input the input map column.
* @return a list of the keys as a column view.
*/
def getKeysAsListView(input: ColumnView): ColumnView =
pullChildOutAsListView(input, KEY_INDEX)
/**
* Get the values from a map column as a list.
* @param input the input map column.
* @return a list of the values as a column view.
*/
def getValuesAsListView(input: ColumnView): ColumnView =
pullChildOutAsListView(input, VALUE_INDEX)
private[this] def replaceStructChild(
structView: ColumnView,
toReplace: ColumnView,
index: Int): ColumnView = {
withResource(structView.getValid) { validity =>
val childViews = new Array[ColumnView](structView.getNumChildren)
try {
childViews.indices.foreach { idx =>
if (idx == index) {
childViews(idx) = toReplace
} else {
childViews(idx) = structView.getChildColumnView(idx)
}
}
new ColumnView(DType.STRUCT, structView.getRowCount,
Optional.empty[java.lang.Long](), validity, null,
childViews)
} finally {
childViews.indices.foreach { idx =>
// We don't want to try and close the view that was passed in.
if (idx != index) {
childViews(idx).safeClose()
}
}
}
}
}
private[this] def replaceExplodedKeyOrValueAsView(
mapCol: ColumnView,
toReplace: ColumnView,
index: Int): ColumnView = {
withResource(mapCol.getChildColumnView(0)) { keyValueView =>
withResource(replaceStructChild(keyValueView, toReplace, index)) { newKeyValueView =>
GpuListUtils.replaceListDataColumnAsView(mapCol, newKeyValueView)
}
}
}
/**
* Replace the values in a map. The values are the underlying exploded values (not in a list)
* @param mapCol the original map column
* @param newValue the new values column
* @return and updated map column view
*/
def replaceExplodedValueAsView(
mapCol: ColumnView,
newValue: ColumnView): ColumnView =
replaceExplodedKeyOrValueAsView(mapCol, newValue, VALUE_INDEX)
/**
* Replace the keys in a map. The values are the underlying exploded keys (not in a list)
* @param mapCol the original map column
* @param newKey the new keys column
* @return and updated map column view
*/
def replaceExplodedKeyAsView(
mapCol: ColumnView,
newKey: ColumnView): ColumnView =
replaceExplodedKeyOrValueAsView(mapCol, newKey, KEY_INDEX)
def assertNoNullKeys(mapView: ColumnView): Unit = {
withResource(mapView.getChildColumnView(0)) { keyValueList =>
withResource(keyValueList.getChildColumnView(KEY_INDEX)) { keyView =>
if (keyView.getNullCount > 0) {
throw new RuntimeException("Cannot use null as map key.")
}
}
}
}
// Copied from Spark org.apache.spark.sql.errors.QueryExecutionErrors
def duplicateMapKeyFoundError: Throwable = {
new RuntimeException(s"Duplicate map key was found, please check the input " +
"data. If you want to remove the duplicated keys, you can set " +
s"${SQLConf.MAP_KEY_DEDUP_POLICY.key} to ${SQLConf.MapKeyDedupPolicy.LAST_WIN} so that " +
"the key inserted at last takes precedence.")
}
}
case class GpuMapFromArraysMeta(expr: MapFromArrays,
override val conf: RapidsConf,
override val parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule)
extends BinaryExprMeta[MapFromArrays](expr, conf, parent, rule) {
override def convertToGpu(lhs: Expression, rhs: Expression): GpuExpression =
GpuMapFromArrays(lhs, rhs)
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy