com.nvidia.spark.rapids.GpuMonotonicallyIncreasingID.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids
import ai.rapids.cudf.{ColumnVector, Scalar}
import org.apache.spark.TaskContext
import org.apache.spark.sql.types.{DataType, LongType}
import org.apache.spark.sql.vectorized.ColumnarBatch
/**
* An expression that returns monotonically increasing 64-bit integers just like
* `org.apache.spark.sql.catalyst.expressions.MonotonicallyIncreasingID`
*
* The generated ID is guaranteed to be monotonically increasing and unique, but not consecutive.
* This implementations should match what spark does which is to put the partition ID in the upper
* 31 bits, and the lower 33 bits represent the record number within each partition.
*/
case class GpuMonotonicallyIncreasingID() extends GpuLeafExpression {
/**
* We need to recompute this if something fails.
*/
override lazy val deterministic: Boolean = false
override def foldable: Boolean = false
override def nullable: Boolean = false
override def dataType: DataType = LongType
override def prettyName: String = "monotonically_increasing_id"
override def sql: String = s"$prettyName()"
@transient private[this] var count: Long = _
@transient private[this] var partitionMask: Long = _
@transient private[this] var wasInitialized: Boolean = _
override def columnarEval(batch: ColumnarBatch): GpuColumnVector = {
if (!wasInitialized) {
count = 0
partitionMask = TaskContext.getPartitionId().toLong << 33
wasInitialized = true
}
var start: Scalar = null
var mask: Scalar = null
var sequence: ColumnVector = null
try {
val numRows = batch.numRows()
start = Scalar.fromLong(count)
mask = Scalar.fromLong(partitionMask)
sequence = ColumnVector.sequence(start, numRows)
count += numRows
GpuColumnVector.from(sequence.add(mask), dataType)
} finally {
if (start != null) {
start.close()
}
if (mask != null) {
mask.close()
}
if (sequence != null) {
sequence.close()
}
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy