com.nvidia.spark.rapids.HostColumnarToGpu.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids
import java.{util => ju}
import java.nio.ByteBuffer
import scala.collection.JavaConverters._
import scala.collection.mutable
import com.nvidia.spark.rapids.Arm.withResource
import com.nvidia.spark.rapids.shims.{GpuTypeShims, ShimUnaryExecNode}
import org.apache.arrow.memory.{ArrowBuf, ReferenceManager}
import org.apache.arrow.vector.ValueVector
import org.apache.spark.TaskContext
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.Attribute
import org.apache.spark.sql.execution.SparkPlan
import org.apache.spark.sql.execution.vectorized.WritableColumnVector
import org.apache.spark.sql.types._
import org.apache.spark.sql.vectorized.{ArrowColumnVector, ColumnarBatch, ColumnVector}
import org.apache.spark.sql.vectorized.rapids.AccessibleArrowColumnVector
object HostColumnarToGpu extends Logging {
// use reflection to get access to a private field in a class
private def getClassFieldAccessible(className: String, fieldName: String) = {
val classObj = ShimReflectionUtils.loadClass(className)
val fields = classObj.getDeclaredFields.toList
val field = fields.filter( x => {
x.getName.contains(fieldName)
}).head
field.setAccessible(true)
field
}
private lazy val accessorField = {
getClassFieldAccessible("org.apache.spark.sql.vectorized.ArrowColumnVector", "accessor")
}
private lazy val vecField = {
getClassFieldAccessible("org.apache.spark.sql.vectorized.ArrowColumnVector$ArrowVectorAccessor",
"vector")
}
// use reflection to get value vector from ArrowColumnVector
private def getArrowValueVector(cv: ColumnVector): ValueVector = {
val arrowCV = cv.asInstanceOf[ArrowColumnVector]
val accessor = accessorField.get(arrowCV)
vecField.get(accessor).asInstanceOf[ValueVector]
}
def arrowColumnarCopy(
cv: ColumnVector,
ab: ai.rapids.cudf.ArrowColumnBuilder,
rows: Int): ju.List[ReferenceManager] = {
val valVector = cv match {
case v: ArrowColumnVector =>
try {
getArrowValueVector(v)
} catch {
case e: Exception =>
throw new IllegalStateException("Trying to read from a ArrowColumnVector but can't " +
"access its Arrow ValueVector", e)
}
case av: AccessibleArrowColumnVector =>
av.getArrowValueVector
case _ =>
throw new IllegalStateException(s"Illegal column vector type: ${cv.getClass}")
}
val referenceManagers = new mutable.ListBuffer[ReferenceManager]
def getBufferAndAddReference(buf: ArrowBuf): ByteBuffer = {
referenceManagers += buf.getReferenceManager
buf.nioBuffer()
}
val nullCount = valVector.getNullCount
val dataBuf = getBufferAndAddReference(valVector.getDataBuffer)
val validity = getBufferAndAddReference(valVector.getValidityBuffer)
// this is a bit ugly, not all Arrow types have the offsets buffer
var offsets: ByteBuffer = null
try {
offsets = getBufferAndAddReference(valVector.getOffsetBuffer)
} catch {
case _: UnsupportedOperationException =>
// swallow the exception and assume no offsets buffer
}
ab.addBatch(rows, nullCount, dataBuf, validity, offsets)
referenceManagers.result().asJava
}
// Data type is passed explicitly to allow overriding the reported type from the column vector.
// There are cases where the type reported by the column vector does not match the data.
// See https://github.com/apache/iceberg/issues/6116.
def columnarCopy(
cv: ColumnVector,
b: RapidsHostColumnBuilder,
dataType: DataType,
rows: Int): Unit = {
dataType match {
case NullType =>
ColumnarCopyHelper.nullCopy(b, rows)
case BooleanType if cv.isInstanceOf[ArrowColumnVector] =>
ColumnarCopyHelper.booleanCopy(cv, b, rows)
case ByteType | BooleanType =>
ColumnarCopyHelper.byteCopy(cv, b, rows)
case ShortType =>
ColumnarCopyHelper.shortCopy(cv, b, rows)
case IntegerType | DateType =>
ColumnarCopyHelper.intCopy(cv, b, rows)
case LongType | TimestampType =>
ColumnarCopyHelper.longCopy(cv, b, rows)
case FloatType =>
ColumnarCopyHelper.floatCopy(cv, b, rows)
case DoubleType =>
ColumnarCopyHelper.doubleCopy(cv, b, rows)
case StringType =>
ColumnarCopyHelper.stringCopy(cv, b, rows)
case dt: DecimalType =>
cv match {
case wcv: WritableColumnVector =>
if (DecimalType.is32BitDecimalType(dt)) {
ColumnarCopyHelper.decimal32Copy(wcv, b, rows)
} else if (DecimalType.is64BitDecimalType(dt)) {
ColumnarCopyHelper.decimal64Copy(wcv, b, rows)
} else {
ColumnarCopyHelper.decimal128Copy(wcv, b, rows)
}
case _ =>
if (DecimalType.is32BitDecimalType(dt)) {
ColumnarCopyHelper.decimal32Copy(cv, b, rows, dt.precision, dt.scale)
} else if (DecimalType.is64BitDecimalType(dt)) {
ColumnarCopyHelper.decimal64Copy(cv, b, rows, dt.precision, dt.scale)
} else {
ColumnarCopyHelper.decimal128Copy(cv, b, rows, dt.precision, dt.scale)
}
}
case other if GpuTypeShims.isColumnarCopySupportedForType(other) =>
GpuTypeShims.columnarCopy(cv, b, other, rows)
case t =>
throw new UnsupportedOperationException(
s"Converting to GPU for $t is not currently supported")
}
}
}
/**
* This iterator builds GPU batches from host batches. The host batches potentially use Spark's
* UnsafeRow so it is not safe to cache these batches. Rows must be read and immediately written
* to CuDF builders.
*/
class HostToGpuCoalesceIterator(iter: Iterator[ColumnarBatch],
goal: CoalesceSizeGoal,
schema: StructType,
numInputRows: GpuMetric,
numInputBatches: GpuMetric,
numOutputRows: GpuMetric,
numOutputBatches: GpuMetric,
streamTime: GpuMetric,
concatTime: GpuMetric,
copyBufTime: GpuMetric,
opTime: GpuMetric,
opName: String,
useArrowCopyOpt: Boolean)
extends AbstractGpuCoalesceIterator(iter,
goal,
numInputRows,
numInputBatches,
numOutputRows,
numOutputBatches,
streamTime,
concatTime,
opTime,
opName) {
// RequireSingleBatch goal is intentionally not supported in this iterator
assert(!goal.isInstanceOf[RequireSingleBatchLike])
var batchBuilder: GpuColumnVector.GpuColumnarBatchBuilderBase = _
var totalRows = 0
// the arrow cudf converter only supports primitive types and strings
// decimals and nested types aren't supported yet
private def arrowTypesSupported(schema: StructType): Boolean = {
val dataTypes = schema.fields.map(_.dataType)
dataTypes.forall(GpuOverrides.isSupportedType(_))
}
/**
* Initialize the builders using an estimated row count based on the schema and the desired
* batch size defined by [[RapidsConf.GPU_BATCH_SIZE_BYTES]].
*/
override def initNewBatch(batch: ColumnarBatch): Unit = {
if (batchBuilder != null) {
batchBuilder.close()
batchBuilder = null
}
// when reading host batches it is essential to read the data immediately and pass to a
// builder and we need to determine how many rows to allocate in the builder based on the
// schema and desired batch size
batchRowLimit = if (batch.numCols() > 0) {
GpuBatchUtils.estimateRowCount(goal.targetSizeBytes,
GpuBatchUtils.estimateGpuMemory(schema, 512), 512)
} else {
// when there aren't any columns, it generally means user is doing a count() and we don't
// need to limit batch size because there isn't any actual data
Integer.MAX_VALUE
}
// if no columns then probably a count operation so doesn't matter which builder we use
// as we won't actually copy any data and we can't tell what type of data it is without
// having a column
if (useArrowCopyOpt && batch.numCols() > 0 &&
arrowTypesSupported(schema) &&
(batch.column(0).isInstanceOf[ArrowColumnVector] ||
batch.column(0).isInstanceOf[AccessibleArrowColumnVector])) {
logDebug("Using GpuArrowColumnarBatchBuilder")
batchBuilder = new GpuColumnVector.GpuArrowColumnarBatchBuilder(schema)
} else {
logDebug("Using GpuColumnarBatchBuilder")
batchBuilder = new GpuColumnVector.GpuColumnarBatchBuilder(schema, batchRowLimit)
}
totalRows = 0
}
/**
* addBatchToConcat for HostToGpuCoalesceIterator does not need to close `batch`
* because the batch is closed by the producer iterator.
* See: https://github.com/NVIDIA/spark-rapids/issues/6995
* @param batch the batch to add in.
*/
override def addBatchToConcat(batch: ColumnarBatch): Unit = {
withResource(new MetricRange(copyBufTime)) { _ =>
val rows = batch.numRows()
for (i <- 0 until batch.numCols()) {
batchBuilder.copyColumnar(batch.column(i), i, rows)
}
totalRows += rows
}
}
override def getBatchDataSize(batch: ColumnarBatch): Long = {
schema.fields.indices.map(GpuBatchUtils.estimateGpuMemory(schema, _, batch.numRows())).sum
}
override def hasAnyToConcat: Boolean = totalRows > 0
override def concatAllAndPutOnGPU(): ColumnarBatch = {
// About to place data back on the GPU
GpuSemaphore.acquireIfNecessary(TaskContext.get())
val ret = RmmRapidsRetryIterator.withRetryNoSplit[ColumnarBatch]{
batchBuilder.tryBuild(totalRows)
}
val maxDeviceMemory = GpuColumnVector.getTotalDeviceMemoryUsed(ret)
// refine the estimate for number of rows based on this batch
batchRowLimit = GpuBatchUtils.estimateRowCount(goal.targetSizeBytes, maxDeviceMemory,
ret.numRows())
ret
}
override val supportsRetryIterator: Boolean = false
override def getCoalesceRetryIterator: Iterator[ColumnarBatch] = {
throw new UnsupportedOperationException(
"HostColumnarToGpu iterator does not support retry iterators")
}
override def cleanupConcatIsDone(): Unit = {
if (batchBuilder != null) {
batchBuilder.close()
batchBuilder = null
}
totalRows = 0
}
private var onDeck: Option[ColumnarBatch] = None
override protected def hasOnDeck: Boolean = onDeck.isDefined
override protected def saveOnDeck(batch: ColumnarBatch): Unit = onDeck = Some(batch)
override protected def clearOnDeck(): Unit = {
onDeck.foreach(_.close())
onDeck = None
}
override protected def popOnDeck(): ColumnarBatch = {
val ret = onDeck.get
onDeck = None
ret
}
override protected def cleanupInputBatch(batch: ColumnarBatch): Unit = {
// Host batches are closed by the producer not the consumer, so nothing to do.
}
}
/**
* Put columnar formatted data on the GPU.
*/
case class HostColumnarToGpu(child: SparkPlan, goal: CoalesceSizeGoal)
extends ShimUnaryExecNode
with GpuExec {
import GpuMetric._
protected override val outputRowsLevel: MetricsLevel = ESSENTIAL_LEVEL
protected override val outputBatchesLevel: MetricsLevel = MODERATE_LEVEL
override lazy val additionalMetrics: Map[String, GpuMetric] = Map(
NUM_INPUT_ROWS -> createMetric(DEBUG_LEVEL, DESCRIPTION_NUM_INPUT_ROWS),
NUM_INPUT_BATCHES -> createMetric(DEBUG_LEVEL, DESCRIPTION_NUM_INPUT_BATCHES),
OP_TIME -> createNanoTimingMetric(MODERATE_LEVEL, DESCRIPTION_OP_TIME),
STREAM_TIME -> createNanoTimingMetric(MODERATE_LEVEL, DESCRIPTION_STREAM_TIME),
CONCAT_TIME -> createNanoTimingMetric(MODERATE_LEVEL, DESCRIPTION_CONCAT_TIME),
COPY_BUFFER_TIME -> createNanoTimingMetric(DEBUG_LEVEL, DESCRIPTION_COPY_BUFFER_TIME)
)
override def output: Seq[Attribute] = child.output
override def supportsColumnar: Boolean = true
override def outputBatching: CoalesceGoal = goal
override protected def doExecute(): RDD[InternalRow] = {
child.execute()
}
/**
* Returns an RDD[ColumnarBatch] that when mapped over will produce GPU-side column vectors
* that are expected to be closed by its caller, not [[HostColumnarToGpu]].
*
* The expectation is that the only valid instantiation of this node is
* as a child of a GPU exec node.
*
* @return an RDD of `ColumnarBatch`
*/
override protected def internalDoExecuteColumnar(): RDD[ColumnarBatch] = {
val numInputRows = gpuLongMetric(NUM_INPUT_ROWS)
val numInputBatches = gpuLongMetric(NUM_INPUT_BATCHES)
val numOutputRows = gpuLongMetric(NUM_OUTPUT_ROWS)
val numOutputBatches = gpuLongMetric(NUM_OUTPUT_BATCHES)
val streamTime = gpuLongMetric(STREAM_TIME)
val concatTime = gpuLongMetric(CONCAT_TIME)
val copyBufTime = gpuLongMetric(COPY_BUFFER_TIME)
val opTime = gpuLongMetric(OP_TIME)
// cache in a local to avoid serializing the plan
val outputSchema = schema
val batches = child.executeColumnar()
val confUseArrow = new RapidsConf(child.conf).useArrowCopyOptimization
batches.mapPartitions { iter =>
new HostToGpuCoalesceIterator(iter, goal, outputSchema,
numInputRows, numInputBatches, numOutputRows, numOutputBatches,
streamTime, concatTime, copyBufTime, opTime,
"HostColumnarToGpu", confUseArrow)
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy