com.nvidia.spark.rapids.InternalExclusiveModeGpuDiscoveryPlugin.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2021, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids
import java.util.Optional
import scala.collection.mutable.ArrayBuffer
import ai.rapids.cudf.Cuda
import org.apache.spark.SparkConf
import org.apache.spark.api.resource.ResourceDiscoveryPlugin
import org.apache.spark.internal.Logging
import org.apache.spark.resource.{ResourceInformation, ResourceRequest}
/**
* Note, this class should not be referenced directly in source code.
* It should be loaded by reflection using ShimLoader.newInstanceOf, see ./docs/dev/shims.md
*/
protected class InternalExclusiveModeGpuDiscoveryPlugin
extends ResourceDiscoveryPlugin with Logging {
override def discoverResource(
request: ResourceRequest,
sparkconf: SparkConf
): Optional[ResourceInformation] = {
val resourceName = request.id.resourceName
if (!resourceName.equals("gpu")) {
logInfo("ExclusiveModeGpuDiscoveryPlugin only handles gpu allocations, " +
s"skipping $resourceName")
return Optional.empty()
}
val ngpusRequested = request.amount
val deviceCount: Int = Cuda.getDeviceCount
logInfo(s"Running ExclusiveModeGpuDiscoveryPlugin to acquire $ngpusRequested GPU(s), " +
s"host has $deviceCount GPU(s)")
// loop multiple times to see if a GPU was released or something unexpected happened that
// we couldn't acquire on first try
var numRetries = 2
val allocatedAddrs = ArrayBuffer[String]()
val addrsToTry = ArrayBuffer.empty ++= (0 until deviceCount)
while (numRetries > 0 && allocatedAddrs.size < ngpusRequested && addrsToTry.nonEmpty) {
var addrLoc = 0
val allAddrs = addrsToTry.size
while (addrLoc < allAddrs && allocatedAddrs.size < ngpusRequested) {
val addr = addrsToTry(addrLoc)
if (GpuDeviceManager.tryToSetGpuDeviceAndAcquire(addr)) {
allocatedAddrs += addr.toString
}
addrLoc += 1
}
addrsToTry --= allocatedAddrs.map(_.toInt)
numRetries -= 1
}
if (allocatedAddrs.size < ngpusRequested) {
// log warning here, Spark will throw exception if we return not enough
logWarning(s"ExclusiveModeGpuDiscoveryPlugin did not find enough gpus, " +
s"requested: $ngpusRequested found: ${allocatedAddrs.size}")
}
Optional.of(new ResourceInformation("gpu", allocatedAddrs.toArray))
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy