com.nvidia.spark.rapids.Plugin.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids
import java.lang.reflect.InvocationTargetException
import java.net.URL
import java.time.ZoneId
import java.util.Properties
import java.util.concurrent.ConcurrentHashMap
import scala.collection.JavaConverters._
import scala.sys.process._
import scala.util.Try
import ai.rapids.cudf.{Cuda, CudaException, CudaFatalException, CudfException, MemoryCleaner, NvtxColor, NvtxRange}
import com.nvidia.spark.rapids.RapidsConf.AllowMultipleJars
import com.nvidia.spark.rapids.RapidsPluginUtils.buildInfoEvent
import com.nvidia.spark.rapids.filecache.{FileCache, FileCacheLocalityManager, FileCacheLocalityMsg}
import com.nvidia.spark.rapids.jni.GpuTimeZoneDB
import com.nvidia.spark.rapids.python.PythonWorkerSemaphore
import org.apache.commons.lang3.exception.ExceptionUtils
import org.apache.spark.{ExceptionFailure, SparkConf, SparkContext, TaskContext, TaskFailedReason}
import org.apache.spark.api.plugin.{DriverPlugin, ExecutorPlugin, PluginContext, SparkPlugin}
import org.apache.spark.internal.Logging
import org.apache.spark.serializer.{JavaSerializer, KryoSerializer}
import org.apache.spark.sql.catalyst.rules.Rule
import org.apache.spark.sql.execution._
import org.apache.spark.sql.internal.StaticSQLConf
import org.apache.spark.sql.rapids.GpuShuffleEnv
import org.apache.spark.sql.rapids.execution.TrampolineUtil
class PluginException(msg: String) extends RuntimeException(msg)
case class CudfVersionMismatchException(errorMsg: String) extends PluginException(errorMsg)
case class ColumnarOverrideRules() extends ColumnarRule with Logging {
lazy val overrides: Rule[SparkPlan] = GpuOverrides()
lazy val overrideTransitions: Rule[SparkPlan] = new GpuTransitionOverrides()
override def preColumnarTransitions : Rule[SparkPlan] = overrides
override def postColumnarTransitions: Rule[SparkPlan] = overrideTransitions
}
object RapidsPluginUtils extends Logging {
val CUDF_PROPS_FILENAME = "cudf-java-version-info.properties"
val JNI_PROPS_FILENAME = "spark-rapids-jni-version-info.properties"
val PLUGIN_PROPS_FILENAME = "rapids4spark-version-info.properties"
private val PRIVATE_PROPS_FILENAME = "rapids4spark-private-version-info.properties"
private val SQL_PLUGIN_NAME = classOf[SQLExecPlugin].getName
private val UDF_PLUGIN_NAME = "com.nvidia.spark.udf.Plugin"
private val SQL_PLUGIN_CONF_KEY = StaticSQLConf.SPARK_SESSION_EXTENSIONS.key
private val SERIALIZER_CONF_KEY = "spark.serializer"
private val JAVA_SERIALIZER_NAME = classOf[JavaSerializer].getName
private val KRYO_SERIALIZER_NAME = classOf[KryoSerializer].getName
private val KRYO_REGISTRATOR_KEY = "spark.kryo.registrator"
private val KRYO_REGISTRATOR_NAME = classOf[GpuKryoRegistrator].getName
private val EXECUTOR_CORES_KEY = "spark.executor.cores"
private val TASK_GPU_AMOUNT_KEY = "spark.task.resource.gpu.amount"
private val EXECUTOR_GPU_AMOUNT_KEY = "spark.executor.resource.gpu.amount"
private val SPARK_MASTER = "spark.master"
private val SPARK_RAPIDS_REPO_URL = "https://github.com/NVIDIA/spark-rapids"
lazy val buildInfoEvent = SparkRapidsBuildInfoEvent(
sparkRapidsBuildInfo = loadProps(PLUGIN_PROPS_FILENAME),
sparkRapidsJniBuildInfo = loadProps(JNI_PROPS_FILENAME),
cudfBuildInfo = loadProps(CUDF_PROPS_FILENAME),
sparkRapidsPrivateBuildInfo =loadProps(PRIVATE_PROPS_FILENAME)
)
{
logInfo(s"RAPIDS Accelerator build: ${buildInfoEvent.sparkRapidsBuildInfo}")
logInfo(s"RAPIDS Accelerator JNI build: ${buildInfoEvent.sparkRapidsJniBuildInfo}")
logInfo(s"cudf build: ${buildInfoEvent.cudfBuildInfo}")
logInfo(s"RAPIDS Accelerator Private ${buildInfoEvent.sparkRapidsPrivateBuildInfo}")
val pluginVersion = buildInfoEvent.sparkRapidsBuildInfo.getOrElse("version", "UNKNOWN")
val cudfVersion = buildInfoEvent.cudfBuildInfo.getOrElse("version", "UNKNOWN")
val privateRev = buildInfoEvent.sparkRapidsPrivateBuildInfo.getOrElse("revision", "UNKNOWN")
logWarning(s"RAPIDS Accelerator $pluginVersion using cudf ${cudfVersion}, " +
s"private revision ${privateRev}")
}
val extraPlugins = getExtraPlugins
def logPluginMode(conf: RapidsConf): Unit = {
if (conf.isSqlEnabled && conf.isSqlExecuteOnGPU) {
logWarning("RAPIDS Accelerator is enabled, to disable GPU " +
s"support set `${RapidsConf.SQL_ENABLED}` to false.")
if (conf.explain != "NONE") {
logWarning(s"spark.rapids.sql.explain is set to `${conf.explain}`. Set it to 'NONE' to " +
"suppress the diagnostics logging about the query placement on the GPU.")
}
} else if (conf.isSqlEnabled && conf.isSqlExplainOnlyEnabled) {
logWarning("RAPIDS Accelerator is in explain only mode, to disable " +
s"set `${RapidsConf.SQL_ENABLED}` to false. To change the mode, " +
s"restart the application and change `${RapidsConf.SQL_MODE}`.")
} else {
logWarning("RAPIDS Accelerator is disabled, to enable GPU " +
s"support set `${RapidsConf.SQL_ENABLED}` to true.")
}
if (conf.isUdfCompilerEnabled) {
logWarning("Experimental RAPIDS UDF compiler is enabled, in case of related failures " +
s"disable it by setting `${RapidsConf.UDF_COMPILER_ENABLED}` to false. " +
"More information is available at " +
"https://docs.nvidia.com/spark-rapids/user-guide/latest/faq.html#" +
"automatic-translation-of-scala-udfs-to-apache-spark-operations" )
}
}
private def detectMultipleJar(propName: String, jarName: String, conf: RapidsConf): Unit = {
val classloader = ShimLoader.getShimClassLoader()
val possibleRapidsJarURLs = classloader.getResources(propName).asScala.toSet.toSeq.filter {
url => {
val urlPath = url.toString
// Filter out submodule jars, e.g. rapids-4-spark-aggregator_2.12-24.10.1-spark341.jar,
// and files stored under subdirs of '!/', e.g.
// rapids-4-spark_2.12-24.10.1-cuda11.jar!/spark330/rapids4spark-version-info.properties
// We only want to find the main jar, e.g.
// rapids-4-spark_2.12-24.10.1-cuda11.jar!/rapids4spark-version-info.properties
!urlPath.contains("rapids-4-spark-") && urlPath.endsWith("!/" + propName)
}
}
val revisionRegex = "revision=(.*)".r
val revisionMap: Map[String, Seq[URL]] = possibleRapidsJarURLs.map { url =>
val versionInfo = scala.io.Source.fromURL(url).getLines().toSeq
val revision = versionInfo
.collect {
case revisionRegex(revision) => revision
}
.headOption
.getOrElse("UNKNOWN")
(revision, url)
}.groupBy(_._1).mapValues(_.map(_._2)).toMap
lazy val rapidsJarsVersMsg = revisionMap.map {
case (revision, urls) => {
s"revison: $revision" + urls.map {
url => "\n\tjar URL: " + url.toString.split("!").head + "\n\t" +
scala.io.Source.fromURL(url).getLines().toSeq.mkString("\n\t")
}.mkString + "\n"
}
}.mkString
lazy val msg = s"Multiple $jarName jars found in the classpath:\n$rapidsJarsVersMsg" +
s"Please make sure there is only one $jarName jar in the classpath. "
// revisionMap.size could be 0 when debugging in IDE, so allow it in that case
conf.allowMultipleJars match {
case AllowMultipleJars.ALWAYS =>
if (revisionMap.size > 1 || revisionMap.values.exists(_.size != 1)) {
logWarning(msg)
}
case AllowMultipleJars.SAME_REVISION =>
val recommended = "If it is impossible to fix the classpath you can suppress the " +
s"error by setting ${RapidsConf.ALLOW_MULTIPLE_JARS.key} to ALWAYS, but this " +
s"can cause unpredictable behavior as the plugin may pick up the wrong jar."
require(revisionMap.size <= 1, msg + recommended)
if (revisionMap.values.exists(_.size != 1)) {
logWarning(msg + recommended)
}
case AllowMultipleJars.NEVER =>
val recommended = "If it is impossible to fix the classpath you can suppress the " +
s"error by setting ${RapidsConf.ALLOW_MULTIPLE_JARS.key} to SAME_REVISION or ALWAYS." +
" But setting it to ALWAYS can cause unpredictable behavior as the plugin may pick " +
"up the wrong jar."
require(revisionMap.size <= 1 && revisionMap.values.forall(_.size == 1), msg + recommended)
}
}
def detectMultipleJars(conf: RapidsConf): Unit = {
detectMultipleJar(PLUGIN_PROPS_FILENAME, "rapids-4-spark", conf)
detectMultipleJar(JNI_PROPS_FILENAME, "spark-rapids-jni", conf)
detectMultipleJar(CUDF_PROPS_FILENAME, "cudf", conf)
}
// This assumes Apache Spark logic, if CSPs are setting defaults differently, we may need
// to handle.
def estimateCoresOnExec(conf: SparkConf): Int = {
val executorCoreConfOption = conf.getOption(RapidsPluginUtils.EXECUTOR_CORES_KEY)
val masterOption = conf.getOption(RapidsPluginUtils.SPARK_MASTER)
val numCores = masterOption match {
case Some(m) =>
m match {
case "yarn" =>
executorCoreConfOption.map(_.toInt).getOrElse(1)
case m if m.startsWith("k8s") =>
executorCoreConfOption.map(_.toInt).getOrElse(1)
case m if m.startsWith("spark") =>
// STANDALONE
executorCoreConfOption.map(_.toInt).getOrElse(Runtime.getRuntime.availableProcessors)
case m if m.startsWith("local-cluster") =>
TrampolineUtil.getCoresInLocalMode(m, conf)
case m if m.startsWith("local") =>
TrampolineUtil.getCoresInLocalMode(m, conf)
case _ =>
val coresToUse = executorCoreConfOption.map(_.toInt).getOrElse(1)
logWarning(s"Master: $m is unknown, number of " +
s"cores is set to $coresToUse")
coresToUse
}
case None =>
// master not set
val coresToUse = executorCoreConfOption.map(_.toInt).getOrElse(1)
logWarning(s"Master is not set, number of cores is set to $coresToUse")
coresToUse
}
logInfo(s"Estimated number of cores is $numCores")
numCores
}
def fixupConfigsOnDriver(conf: SparkConf): Unit = {
// First add in the SQL executor plugin because that is what we need at a minimum
if (conf.contains(SQL_PLUGIN_CONF_KEY)) {
for (pluginName <- Array(SQL_PLUGIN_NAME, UDF_PLUGIN_NAME)){
val previousValue = conf.get(SQL_PLUGIN_CONF_KEY).split(",").map(_.trim)
if (!previousValue.contains(pluginName)) {
conf.set(SQL_PLUGIN_CONF_KEY, (previousValue :+ pluginName).mkString(","))
} else {
conf.set(SQL_PLUGIN_CONF_KEY, previousValue.mkString(","))
}
}
} else {
conf.set(SQL_PLUGIN_CONF_KEY, Array(SQL_PLUGIN_NAME,UDF_PLUGIN_NAME).mkString(","))
}
val serializer = conf.get(SERIALIZER_CONF_KEY, JAVA_SERIALIZER_NAME)
if (KRYO_SERIALIZER_NAME.equals(serializer)) {
if (conf.contains(KRYO_REGISTRATOR_KEY)) {
if (!KRYO_REGISTRATOR_NAME.equals(conf.get(KRYO_REGISTRATOR_KEY)) ) {
logWarning("The RAPIDS Accelerator when used with Kryo needs to register some " +
s"serializers using $KRYO_REGISTRATOR_NAME. Please call it from your registrator " +
" to let the plugin work properly.")
} // else it is set and we are good to go
} else {
// We cannot set the kryo key here, it is not early enough to be picked up everywhere
throw new UnsupportedOperationException("The RAPIDS Accelerator when used with Kryo " +
"needs to register some serializers. Please set the spark config " +
s"$KRYO_REGISTRATOR_KEY to $KRYO_REGISTRATOR_NAME or some operations may not work " +
"properly.")
}
} else if (!JAVA_SERIALIZER_NAME.equals(serializer)) {
throw new UnsupportedOperationException(s"$serializer is not a supported serializer for " +
s"the RAPIDS Accelerator. Please disable the RAPIDS Accelerator or use a supported " +
s"serializer ($JAVA_SERIALIZER_NAME, $KRYO_SERIALIZER_NAME).")
}
// set driver timezone
conf.set(RapidsConf.DRIVER_TIMEZONE.key, ZoneId.systemDefault().normalized().toString)
// If spark.rapids.sql.multiThreadedRead.numThreads is not set explicitly, then we derive it
// from other settings. Otherwise, we keep the users' setting.
val numThreadsKey = RapidsConf.MULTITHREAD_READ_NUM_THREADS.key
if (!conf.contains(numThreadsKey)) {
// Derive it from spark.executor.cores, since spark.executor.cores is not set on all cluster
// managers by default, we should judge whether if it's set explicitly.
if (conf.contains(EXECUTOR_CORES_KEY)) {
val numThreads = Math.max(RapidsConf.MULTITHREAD_READ_NUM_THREADS_DEFAULT,
conf.get(EXECUTOR_CORES_KEY).toInt).toString
conf.set(numThreadsKey, numThreads)
logWarning(s"$numThreadsKey is set to $numThreads.")
}
}
// If spark.task.resource.gpu.amount is larger than
// (spark.executor.resource.gpu.amount / spark.executor.cores) then GPUs will be the limiting
// resource for task scheduling, but we can only output the warning if executor cores is set
// because this is happening on the driver so the number of cores in the runtime is not
// relevant
if (conf.contains(TASK_GPU_AMOUNT_KEY) &&
conf.contains(EXECUTOR_GPU_AMOUNT_KEY) &&
conf.contains(EXECUTOR_CORES_KEY)) {
val taskGpuAmountSetByUser = conf.get(TASK_GPU_AMOUNT_KEY).toDouble
val executorCores = conf.get(EXECUTOR_CORES_KEY).toDouble
val executorGpuAmount = conf.get(EXECUTOR_GPU_AMOUNT_KEY).toDouble
if (executorCores != 0 && taskGpuAmountSetByUser > executorGpuAmount / executorCores) {
logWarning("The current setting of spark.task.resource.gpu.amount " +
s"($taskGpuAmountSetByUser) is not ideal to get the best performance from the " +
"RAPIDS Accelerator plugin. It's recommended to be 1/{executor core count} unless " +
"you have a special use case.")
}
}
}
def loadProps(resourceName: String): Map[String, String] = {
val classLoader = RapidsPluginUtils.getClass.getClassLoader
val resource = classLoader.getResourceAsStream(resourceName)
if (resource == null) {
throw new PluginException(s"Could not find properties file $resourceName in the classpath")
}
val props = new Properties
props.load(resource)
props.asScala.toMap
}
private def loadExtensions[T <: AnyRef](extClass: Class[T], classes: Seq[String]): Seq[T] = {
classes.flatMap { name =>
try {
val klass = TrampolineUtil.classForName[T](name)
require(extClass.isAssignableFrom(klass),
s"$name is not a subclass of ${extClass.getName()}.")
Some(klass.getConstructor().newInstance())
} catch {
case _: NoSuchMethodException =>
throw new NoSuchMethodException(
s"$name did not have a zero-argument constructor or a" +
" single-argument constructor that accepts SparkConf. Note: if the class is" +
" defined inside of another Scala class, then its constructors may accept an" +
" implicit parameter that references the enclosing class; in this case, you must" +
" define the class as a top-level class in order to prevent this extra" +
" parameter from breaking Spark's ability to find a valid constructor.")
case e: InvocationTargetException =>
e.getCause() match {
case uoe: UnsupportedOperationException =>
logDebug(s"Extension $name not being initialized.", uoe)
logInfo(s"Extension $name not being initialized.")
None
case null => throw e
case cause => throw cause
}
}
}
}
private def getExtraPlugins: Seq[SparkPlugin] = {
val resourceName = "spark-rapids-extra-plugins"
val classLoader = RapidsPluginUtils.getClass.getClassLoader
val resource = classLoader.getResourceAsStream(resourceName)
if (resource == null) {
logDebug(s"Could not find file $resourceName in the classpath, not loading extra plugins")
Seq.empty
} else {
val pluginClasses = scala.io.Source.fromInputStream(resource).getLines().toSeq
loadExtensions(classOf[SparkPlugin], pluginClasses)
}
}
/**
* Extracts supported GPU architectures from the given properties file
*/
private def getSupportedGpuArchitectures(props: Map[String, String], origin: String): Set[Int] = {
props.getOrElse("gpu_architectures", sys.error(s"GPU architectures not found in $origin"))
.split(";")
.map(_.toInt)
.toSet
}
/**
* Checks if the current GPU architecture is supported by the spark-rapids-jni
* and cuDF libraries.
*/
def validateGpuArchitecture(): Unit = {
val gpuArch = Cuda.getComputeCapabilityMajor * 10 + Cuda.getComputeCapabilityMinor
validateGpuArchitectureInternal(gpuArch,
getSupportedGpuArchitectures(buildInfoEvent.sparkRapidsJniBuildInfo, JNI_PROPS_FILENAME),
getSupportedGpuArchitectures(buildInfoEvent.cudfBuildInfo, CUDF_PROPS_FILENAME))
}
/**
* Checks the validity of the provided GPU architecture in the provided architecture set.
*
* See: https://docs.nvidia.com/cuda/ampere-compatibility-guide/index.html
*/
def validateGpuArchitectureInternal(gpuArch: Int, jniSupportedGpuArchs: Set[Int],
cudfSupportedGpuArchs: Set[Int]): Unit = {
val supportedGpuArchs = jniSupportedGpuArchs.intersect(cudfSupportedGpuArchs)
if (supportedGpuArchs.isEmpty) {
val jniSupportedGpuArchsStr = jniSupportedGpuArchs.toSeq.sorted.mkString(", ")
val cudfSupportedGpuArchsStr = cudfSupportedGpuArchs.toSeq.sorted.mkString(", ")
throw new IllegalStateException(s"Compatibility check failed for GPU architecture " +
s"$gpuArch. Supported GPU architectures by JNI: $jniSupportedGpuArchsStr and " +
s"cuDF: $cudfSupportedGpuArchsStr. Please report this issue at $SPARK_RAPIDS_REPO_URL." +
s" This check can be disabled by setting `spark.rapids.skipGpuArchitectureCheck` to" +
s" `true`, but it may lead to functional failures.")
}
val minSupportedGpuArch = supportedGpuArchs.min
// Check if the device architecture is supported
if (gpuArch < minSupportedGpuArch) {
throw new RuntimeException(s"Device architecture $gpuArch is unsupported." +
s" Minimum supported architecture: $minSupportedGpuArch.")
}
val supportedMajorGpuArchs = supportedGpuArchs.map(_ / 10)
val majorGpuArch = gpuArch / 10
// Warn the user if the device's major architecture is not available
if (!supportedMajorGpuArchs.contains(majorGpuArch)) {
val supportedMajorArchStr = supportedMajorGpuArchs.toSeq.sorted.mkString(", ")
logWarning(s"No precompiled binaries for device major architecture $majorGpuArch. " +
"This may lead to expensive JIT compile on startup. " +
s"Binaries available for architectures $supportedMajorArchStr.")
}
}
}
/**
* The Spark driver plugin provided by the RAPIDS Spark plugin.
*/
class RapidsDriverPlugin extends DriverPlugin with Logging {
var rapidsShuffleHeartbeatManager: RapidsShuffleHeartbeatManager = null
private lazy val extraDriverPlugins =
RapidsPluginUtils.extraPlugins.map(_.driverPlugin()).filterNot(_ == null)
override def receive(msg: Any): AnyRef = {
msg match {
case m: FileCacheLocalityMsg =>
// handleMsg should not block current thread
FileCacheLocalityManager.get.handleMsg(m)
case RapidsExecutorStartupMsg(id) =>
if (rapidsShuffleHeartbeatManager == null) {
throw new IllegalStateException(
s"Rpc message $msg received, but shuffle heartbeat manager not configured.")
}
rapidsShuffleHeartbeatManager.registerExecutor(id)
case RapidsExecutorHeartbeatMsg(id) =>
if (rapidsShuffleHeartbeatManager == null) {
throw new IllegalStateException(
s"Rpc message $msg received, but shuffle heartbeat manager not configured.")
}
rapidsShuffleHeartbeatManager.executorHeartbeat(id)
case m: GpuCoreDumpMsg => GpuCoreDumpHandler.handleMsg(m)
case m: ProfileMsg => ProfilerOnDriver.handleMsg(m)
case m => throw new IllegalStateException(s"Unknown message $m")
}
}
override def init(
sc: SparkContext, pluginContext: PluginContext): java.util.Map[String, String] = {
val sparkConf = pluginContext.conf
RapidsPluginUtils.fixupConfigsOnDriver(sparkConf)
val conf = new RapidsConf(sparkConf)
RapidsPluginUtils.detectMultipleJars(conf)
RapidsPluginUtils.logPluginMode(conf)
GpuCoreDumpHandler.driverInit(sc, conf)
ProfilerOnDriver.init(sc, conf)
if (GpuShuffleEnv.isRapidsShuffleAvailable(conf)) {
GpuShuffleEnv.initShuffleManager()
if (GpuShuffleEnv.isUCXShuffleAndEarlyStart(conf)) {
rapidsShuffleHeartbeatManager =
new RapidsShuffleHeartbeatManager(
conf.shuffleTransportEarlyStartHeartbeatInterval,
conf.shuffleTransportEarlyStartHeartbeatTimeout)
}
}
FileCacheLocalityManager.init(sc)
logDebug("Loading extra driver plugins: " +
s"${extraDriverPlugins.map(_.getClass.getName).mkString(",")}")
extraDriverPlugins.foreach(_.init(sc, pluginContext))
TrampolineUtil.postEvent(sc, buildInfoEvent)
conf.rapidsConfMap
}
override def registerMetrics(appId: String, pluginContext: PluginContext): Unit = {
extraDriverPlugins.foreach(_.registerMetrics(appId, pluginContext))
}
override def shutdown(): Unit = {
extraDriverPlugins.foreach(_.shutdown())
FileCacheLocalityManager.shutdown()
}
}
/**
* The Spark executor plugin provided by the RAPIDS Spark plugin.
*/
class RapidsExecutorPlugin extends ExecutorPlugin with Logging {
var rapidsShuffleHeartbeatEndpoint: RapidsShuffleHeartbeatEndpoint = null
private lazy val extraExecutorPlugins =
RapidsPluginUtils.extraPlugins.map(_.executorPlugin()).filterNot(_ == null)
private val activeTaskNvtx = new ConcurrentHashMap[Thread, NvtxRange]()
override def init(
pluginContext: PluginContext,
extraConf: java.util.Map[String, String]): Unit = {
try {
// if configured, re-register checking leaks hook.
reRegisterCheckLeakHook()
val sparkConf = pluginContext.conf()
val numCores = RapidsPluginUtils.estimateCoresOnExec(sparkConf)
val conf = new RapidsConf(extraConf.asScala.toMap)
ProfilerOnExecutor.init(pluginContext, conf)
// Checks if the current GPU architecture is supported by the
// spark-rapids-jni and cuDF libraries.
// Note: We allow this check to be skipped for off-chance cases.
if (!conf.skipGpuArchCheck) {
RapidsPluginUtils.validateGpuArchitecture()
}
// Fail if there are multiple plugin jars in the classpath.
RapidsPluginUtils.detectMultipleJars(conf)
// Compare if the cudf version mentioned in the classpath is equal to the version which
// plugin expects. If there is a version mismatch, throw error. This check can be disabled
// by setting this config spark.rapids.cudfVersionOverride=true
checkCudfVersion(conf)
// Validate driver and executor time zone are same if the driver time zone is supported by
// the plugin.
val driverTimezone = conf.driverTimeZone match {
case Some(value) => ZoneId.of(value)
case None => throw new RuntimeException(s"Driver time zone cannot be determined.")
}
val executorTimezone = ZoneId.systemDefault()
if (executorTimezone.normalized() != driverTimezone.normalized()) {
throw new RuntimeException(s" Driver and executor timezone mismatch. " +
s"Driver timezone is $driverTimezone and executor timezone is " +
s"$executorTimezone. Set executor timezone to $driverTimezone.")
}
GpuCoreDumpHandler.executorInit(conf, pluginContext)
// we rely on the Rapids Plugin being run with 1 GPU per executor so we can initialize
// on executor startup.
if (!GpuDeviceManager.rmmTaskInitEnabled) {
logInfo("Initializing memory from Executor Plugin")
GpuDeviceManager.initializeGpuAndMemory(pluginContext.resources().asScala.toMap, conf,
numCores)
if (GpuShuffleEnv.isRapidsShuffleAvailable(conf)) {
GpuShuffleEnv.initShuffleManager()
if (GpuShuffleEnv.isUCXShuffleAndEarlyStart(conf)) {
logInfo("Initializing shuffle manager heartbeats")
rapidsShuffleHeartbeatEndpoint = new RapidsShuffleHeartbeatEndpoint(pluginContext, conf)
rapidsShuffleHeartbeatEndpoint.registerShuffleHeartbeat()
}
}
}
logDebug("Loading extra executor plugins: " +
s"${extraExecutorPlugins.map(_.getClass.getName).mkString(",")}")
extraExecutorPlugins.foreach(_.init(pluginContext, extraConf))
GpuSemaphore.initialize()
FileCache.init(pluginContext)
} catch {
// Exceptions in executor plugin can cause a single thread to die but the executor process
// sticks around without any useful info until it hearbeat times out. Print what happened
// and exit immediately.
case e: CudaException =>
logError("Exception in the executor plugin, shutting down!", e)
logGpuDebugInfoAndExit(systemExitCode = 1)
case e: Throwable =>
logError("Exception in the executor plugin, shutting down!", e)
System.exit(1)
}
}
/**
* Re-register leaks checking hook if configured.
*/
private def reRegisterCheckLeakHook(): Unit = {
// DEFAULT_SHUTDOWN_THREAD in MemoryCleaner is responsible to check the leaks at shutdown time,
// it expects all other hooks are done before the checking
// as other hooks will close some resources.
if (MemoryCleaner.configuredDefaultShutdownHook) {
// Shutdown hooks are executed concurrently in JVM, and there is no execution order guarantee.
// See the doc of `Runtime.addShutdownHook`.
// Here we should wait Spark hooks to be done, or a false leak will be detected.
// See issue: https://github.com/NVIDIA/spark-rapids/issues/5854
//
// Here use `Spark ShutdownHookManager` to manage hooks with priority.
// 20 priority is small enough, will run after Spark hooks.
TrampolineUtil.addShutdownHook(20, MemoryCleaner.removeDefaultShutdownHook())
}
}
private def checkCudfVersion(conf: RapidsConf): Unit = {
try {
val expectedCudfVersion = buildInfoEvent.sparkRapidsBuildInfo.getOrElse("cudf_version",
throw CudfVersionMismatchException("Could not find cudf version in " +
RapidsPluginUtils.PLUGIN_PROPS_FILENAME))
val cudfVersion = buildInfoEvent.cudfBuildInfo.getOrElse("version",
throw CudfVersionMismatchException("Could not find cudf version in " +
RapidsPluginUtils.CUDF_PROPS_FILENAME))
// compare cudf version in the classpath with the cudf version expected by plugin
if (!RapidsExecutorPlugin.cudfVersionSatisfied(expectedCudfVersion, cudfVersion)) {
throw CudfVersionMismatchException(s"Found cudf version $cudfVersion, RAPIDS Accelerator " +
s"expects $expectedCudfVersion")
}
} catch {
case x: PluginException if conf.cudfVersionOverride =>
logWarning(s"Ignoring error due to ${RapidsConf.CUDF_VERSION_OVERRIDE.key}=true: " +
s"${x.getMessage}")
}
}
// Wait for command spawned via Process
private def waitForProcess(cmd: Process, durationMs: Long): Option[Int] = {
val endTime = System.currentTimeMillis() + durationMs
do {
Thread.sleep(10)
if (!cmd.isAlive()) {
return Some(cmd.exitValue())
}
} while (System.currentTimeMillis() < endTime)
// Timed out
cmd.destroy()
None
}
// Try to run nvidia-smi when task fails due to a cuda exception.
private def logGpuDebugInfoAndExit(systemExitCode: Int) = synchronized {
try {
val nvidiaSmiStdout = new StringBuilder
val nvidiaSmiStderr = new StringBuilder
val cmd = "nvidia-smi".run(
ProcessLogger(s => nvidiaSmiStdout.append(s + "\n"), s => nvidiaSmiStderr.append(s + "\n")))
waitForProcess(cmd, 10000) match {
case Some(exitStatus) =>
if (exitStatus == 0) {
logWarning("nvidia-smi:\n" + nvidiaSmiStdout)
} else {
logWarning("nvidia-smi failed with: " + nvidiaSmiStdout + nvidiaSmiStderr)
}
case None => logWarning("nvidia-smi command timed out")
}
} catch {
case e: Throwable =>
logWarning("nvidia-smi process failed", e)
}
System.exit(systemExitCode)
}
override def shutdown(): Unit = {
GpuTimeZoneDB.shutdown()
GpuSemaphore.shutdown()
PythonWorkerSemaphore.shutdown()
GpuDeviceManager.shutdown()
ProfilerOnExecutor.shutdown()
Option(rapidsShuffleHeartbeatEndpoint).foreach(_.close())
extraExecutorPlugins.foreach(_.shutdown())
FileCache.shutdown()
GpuCoreDumpHandler.shutdown()
}
override def onTaskFailed(failureReason: TaskFailedReason): Unit = {
def containsCudaFatalException(e: Throwable): Boolean = {
ExceptionUtils.getThrowableList(e).asScala.exists(e => e.isInstanceOf[CudaFatalException])
}
failureReason match {
case ef: ExceptionFailure =>
ef.exception match {
case Some(e) if containsCudaFatalException(e) =>
logError("Stopping the Executor based on exception being a fatal CUDA error: " +
s"${ef.toErrorString}")
GpuCoreDumpHandler.waitForDump(timeoutSecs = 60)
logGpuDebugInfoAndExit(systemExitCode = 20)
case Some(_: CudaException) =>
logDebug(s"Executor onTaskFailed because of a non-fatal CUDA error: " +
s"${ef.toErrorString}")
case Some(_: CudfException) =>
logDebug(s"Executor onTaskFailed because of a CUDF error: ${ef.toErrorString}")
case _ =>
logDebug(s"Executor onTaskFailed: ${ef.toErrorString}")
}
case other =>
logDebug(s"Executor onTaskFailed: ${other.toString}")
}
extraExecutorPlugins.foreach(_.onTaskFailed(failureReason))
endTaskNvtx()
}
override def onTaskStart(): Unit = {
startTaskNvtx(TaskContext.get)
extraExecutorPlugins.foreach(_.onTaskStart())
ProfilerOnExecutor.onTaskStart()
}
override def onTaskSucceeded(): Unit = {
extraExecutorPlugins.foreach(_.onTaskSucceeded())
endTaskNvtx()
}
private def startTaskNvtx(taskCtx: TaskContext): Unit = {
val stageId = taskCtx.stageId()
val taskAttemptId = taskCtx.taskAttemptId()
val attemptNumber = taskCtx.attemptNumber()
activeTaskNvtx.put(Thread.currentThread(),
new NvtxRange(s"Stage $stageId Task $taskAttemptId-$attemptNumber", NvtxColor.DARK_GREEN))
}
private def endTaskNvtx(): Unit = {
val nvtx = activeTaskNvtx.remove(Thread.currentThread())
if (nvtx != null) {
nvtx.close()
}
}
}
object RapidsExecutorPlugin {
/**
* Return true if the expected cudf version is satisfied by the actual version found.
* The version is satisfied if the major and minor versions match exactly. If there is a requested
* patch version then the actual patch version must be greater than or equal.
* For example, version 7.1 is not satisfied by version 7.2, but version 7.1 is satisfied by
* version 7.1.1.
* If the expected cudf version is a specified 'timestamp-seq' one, then it is satisfied by
* the SNAPSHOT version.
* For example, version 7.1-yyyymmdd.hhmmss-seq is satisfied by version 7.1-SNAPSHOT.
*/
def cudfVersionSatisfied(expected: String, actual: String): Boolean = {
val expHyphen = if (expected.indexOf('-') >= 0) expected.indexOf('-') else expected.length
val actHyphen = if (actual.indexOf('-') >= 0) actual.indexOf('-') else actual.length
if (actual.substring(actHyphen) != expected.substring(expHyphen) &&
!(actual.substring(actHyphen) == "-SNAPSHOT" &&
expected.substring(expHyphen).matches("-([0-9]{8}).([0-9]{6})-([1-9][0-9]*)"))) {
return false
}
val (expMajorMinor, expPatch) = expected.substring(0, expHyphen).split('.').splitAt(2)
val (actMajorMinor, actPatch) = actual.substring(0, actHyphen).split('.').splitAt(2)
actMajorMinor.startsWith(expMajorMinor) && {
val expPatchInts = expPatch.map(_.toInt)
val actPatchInts = actPatch.map(v => Try(v.toInt).getOrElse(Int.MinValue))
val zipped = expPatchInts.zipAll(actPatchInts, 0, 0)
zipped.forall { case (e, a) => e <= a }
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy