com.nvidia.spark.rapids.SlicedGpuColumnVector Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids;
import ai.rapids.cudf.DType;
import ai.rapids.cudf.HostColumnVectorCore;
import org.apache.spark.sql.types.Decimal;
import org.apache.spark.sql.vectorized.ColumnVector;
import org.apache.spark.sql.vectorized.ColumnarArray;
import org.apache.spark.sql.vectorized.ColumnarBatch;
import org.apache.spark.sql.vectorized.ColumnarMap;
import org.apache.spark.unsafe.types.UTF8String;
/**
* Wraps a GpuColumnVector but only points to a slice of it. This is intended to only be used
* during shuffle after the data is partitioned and before it is serialized.
*/
public class SlicedGpuColumnVector extends ColumnVector {
private final RapidsHostColumnVector wrap;
private final int start;
private final int end;
/**
* Sets up the data type of this column vector.
*/
protected SlicedGpuColumnVector(RapidsHostColumnVector w, int start, int end) {
super(w.dataType());
this.wrap = w;
this.start = start;
this.end = end;
assert start >= 0;
assert end > start; // we don't support empty slices, it should be a null
assert end <= w.getBase().getRowCount();
w.incRefCount();
}
@Override
public void close() {
wrap.close();
}
public static ColumnarBatch incRefCount(ColumnarBatch batch) {
for (int i = 0; i < batch.numCols(); i++) {
((SlicedGpuColumnVector)batch.column(i)).getBase().incRefCount();
}
return batch;
}
@Override
public boolean hasNull() {
// This is a hack, we don't really know...
return wrap.hasNull();
}
@Override
public int numNulls() {
// This is a hack, we don't really know...
return wrap.numNulls();
}
@Override
public boolean isNullAt(int rowId) {
assert rowId + start < end;
return wrap.isNullAt(rowId + start);
}
@Override
public boolean getBoolean(int rowId) {
assert rowId + start < end;
return wrap.getBoolean(rowId + start);
}
@Override
public byte getByte(int rowId) {
assert rowId + start < end;
return wrap.getByte(rowId + start);
}
@Override
public short getShort(int rowId) {
assert rowId + start < end;
return wrap.getShort(rowId + start);
}
@Override
public int getInt(int rowId) {
assert rowId + start < end;
return wrap.getInt(rowId + start);
}
@Override
public long getLong(int rowId) {
assert rowId + start < end;
return wrap.getLong(rowId + start);
}
@Override
public float getFloat(int rowId) {
assert rowId + start < end;
return wrap.getFloat(rowId + start);
}
@Override
public double getDouble(int rowId) {
assert rowId + start < end;
return wrap.getDouble(rowId + start);
}
@Override
public ColumnarArray getArray(int rowId) {
assert rowId + start < end;
return wrap.getArray(rowId + start);
}
@Override
public ColumnarMap getMap(int rowId) {
assert rowId + start < end;
return wrap.getMap(rowId + start);
}
@Override
public Decimal getDecimal(int rowId, int precision, int scale) {
assert rowId + start < end;
return wrap.getDecimal(rowId + start, precision, scale);
}
@Override
public UTF8String getUTF8String(int rowId) {
assert rowId + start < end;
return wrap.getUTF8String(rowId + start);
}
@Override
public byte[] getBinary(int rowId) {
assert rowId + start < end;
return wrap.getBinary(rowId + start);
}
@Override
public ColumnVector getChild(int ordinal) {
throw new UnsupportedOperationException("Children for a slice are not currently supported...");
}
public ai.rapids.cudf.HostColumnVector getBase() {
return wrap.getBase();
}
public RapidsHostColumnVector getWrap() {
return wrap;
}
public int getStart() {
return start;
}
public int getEnd() {
return end;
}
private static long getSizeOf(HostColumnVectorCore cv, int start, int end) {
long total = 0;
if (end > start) {
ai.rapids.cudf.HostMemoryBuffer validity = cv.getValidity();
if (validity != null) {
// This is the same as ColumnView.getValidityBufferSize
// number of bytes required = Math.ceil(number of bits / 8)
long actualBytes = ((long) (end - start) + 7) >> 3;
// padding to the multiplies of the padding boundary(64 bytes)
total += ((actualBytes + 63) >> 6) << 6;
}
ai.rapids.cudf.HostMemoryBuffer off = cv.getOffsets();
if (off != null) {
total += (end - start + 1) * 4L;
int newStart = (int) cv.getStartListOffset(start);
int newEnd = (int) cv.getEndListOffset(end - 1);
ai.rapids.cudf.HostMemoryBuffer data = cv.getData();
if ((data != null) && (newEnd > newStart)) {
if (DType.STRING.equals(cv.getType())) {
total += newEnd - newStart;
} else {
throw new IllegalStateException("HOW CAN A " + cv.getType() +
" HAVE DATA AND OFFSETS? " + cv);
}
}
for (int i = 0; i < cv.getNumChildren(); i++) {
total += getSizeOf(cv.getChildColumnView(i), newStart, newEnd);
}
} else {
ai.rapids.cudf.HostMemoryBuffer data = cv.getData();
if (data != null) {
total += (long) (cv.getType().getSizeInBytes()) * (end - start);
}
for (int i = 0; i < cv.getNumChildren(); i++) {
total += getSizeOf(cv.getChildColumnView(i), start, end);
}
}
}
return total;
}
public static long getTotalHostMemoryUsed(ColumnarBatch batch) {
long sum = 0;
if (batch.numCols() > 0) {
for (int i = 0; i < batch.numCols(); i++) {
ColumnVector tmp = batch.column(i);
if (tmp instanceof SlicedGpuColumnVector) {
SlicedGpuColumnVector scv = (SlicedGpuColumnVector) tmp;
sum += getSizeOf(scv.getBase(), scv.getStart(), scv.getEnd());
} else {
throw new RuntimeException(tmp + " is not supported for this");
}
}
}
return sum;
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy