com.nvidia.spark.rapids.higherOrderFunctions.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2021-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids
import scala.collection.mutable
import ai.rapids.cudf
import ai.rapids.cudf.{DType, Table}
import com.nvidia.spark.rapids.Arm.{closeOnExcept, withResource}
import com.nvidia.spark.rapids.RapidsPluginImplicits.ReallyAGpuExpression
import com.nvidia.spark.rapids.shims.ShimExpression
import org.apache.spark.sql.catalyst.expressions.{Attribute, AttributeReference, AttributeSeq, Expression, ExprId, NamedExpression}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types.{ArrayType, BooleanType, DataType, MapType, Metadata}
import org.apache.spark.sql.vectorized.ColumnarBatch
/**
* A named lambda variable. In Spark on the CPU this includes an AtomicReference to the value that
* is updated each time a lambda function is called. On the GPU we have to bind this and turn it
* into a GpuBoundReference for a modified input batch. In the future this should also work with AST
* when cudf supports that type of operation.
*/
case class GpuNamedLambdaVariable(
name: String,
dataType: DataType,
nullable: Boolean,
exprId: ExprId = NamedExpression.newExprId)
extends GpuLeafExpression
with NamedExpression
with GpuUnevaluable {
override def qualifier: Seq[String] = Seq.empty
override def newInstance(): NamedExpression =
copy(exprId = NamedExpression.newExprId)
override def toAttribute: Attribute = {
AttributeReference(name, dataType, nullable, Metadata.empty)(exprId, Seq.empty)
}
override def toString: String = s"lambda $name#${exprId.id}$typeSuffix"
override def simpleString(maxFields: Int): String = {
s"lambda $name#${exprId.id}: ${dataType.simpleString(maxFields)}"
}
}
/**
* A lambda function and its arguments on the GPU. This is mostly just a wrapper around the
* function expression, but it holds references to the arguments passed into it.
*/
case class GpuLambdaFunction(
function: Expression,
arguments: Seq[NamedExpression],
hidden: Boolean = false)
extends GpuExpression with ShimExpression {
override def children: Seq[Expression] = function +: arguments
override def dataType: DataType = function.dataType
override def nullable: Boolean = function.nullable
override def disableTieredProjectCombine: Boolean = true
override def columnarEval(batch: ColumnarBatch): GpuColumnVector =
function.asInstanceOf[GpuExpression].columnarEval(batch)
}
/**
* A higher order function takes one or more (lambda) functions and applies these to some objects.
* The function produces a number of variables which can be consumed by some lambda function.
*/
trait GpuHigherOrderFunction extends GpuExpression with ShimExpression {
override def nullable: Boolean = arguments.exists(_.nullable)
override def children: Seq[Expression] = arguments ++ functions
/**
* Arguments of the higher ordered function.
*/
def arguments: Seq[Expression]
/**
* Functions applied by the higher order function.
*/
def functions: Seq[Expression]
}
/**
* Trait for functions having as input one argument and one function.
*/
trait GpuSimpleHigherOrderFunction extends GpuHigherOrderFunction with GpuBind {
def argument: Expression
override def arguments: Seq[Expression] = argument :: Nil
def function: Expression
protected val lambdaFunction: GpuLambdaFunction = function.asInstanceOf[GpuLambdaFunction]
override def functions: Seq[Expression] = function :: Nil
/**
* Do the core work of binding this and its lambda function.
* @param input the input attributes
* @return the bound child GpuLambdaFunction, the bound argument, and project expressions for
* everything except the lambda function's arguments, because how you get those is
* often dependent on the type of processing you are doing.
*/
protected def bindLambdaFunc(input: AttributeSeq): (GpuLambdaFunction, GpuExpression,
Seq[GpuExpression]) = {
// Bind the argument parameter, but it can also be a lambda variable...
val boundArg = GpuBindReferences.bindRefInternal[Expression, GpuExpression](argument, input, {
case lr: GpuNamedLambdaVariable if input.indexOf(lr.exprId) >= 0 =>
val ordinal = input.indexOf(lr.exprId)
GpuBoundReference(ordinal, lr.dataType, input(ordinal).nullable)(lr.exprId, lr.name)
})
// `function` is a lambda function. In CPU Spark a lambda function's parameters are wrapping
// AtomicReference values and the parent expression sets the values before they are processed.
// That does not work for us. When processing a lambda function we pass in a modified
// columnar batch, which includes the arguments to that lambda function. To make this work
// we have to bind the GpuNamedLambdaVariable to a GpuBoundReference and also handle the
// binding of AttributeReference to GpuBoundReference based on the attributes in the new batch
// that will be passed to the lambda function. This get especially tricky when dealing with
// nested lambda functions. So to make that work we first have to find all of the
// GpuNamedLambdaVariable instances that are provided by lambda expressions below us in the
// expression tree
val namedVariablesProvidedByChildren = mutable.HashSet[ExprId]()
// We purposely include the arguments to the lambda function just below us because
// we will add them in as a special case later on.
lambdaFunction.foreach {
case childLambda: GpuLambdaFunction =>
namedVariablesProvidedByChildren ++= childLambda.arguments.map(_.exprId)
case _ => // ignored
}
// With this information we can now find all of the AttributeReference and
// GpuNamedLambdaVariable instances below us so we know what columns in `input` we have
// to pass on. This is a performance and memory optimization because we are going to explode
// the columns that are used below us, which can end up using a lot of memory
val usedReferences = new mutable.HashMap[ExprId, Attribute]()
function.foreach {
case att: AttributeReference => usedReferences(att.exprId) = att
case namedLambda: GpuNamedLambdaVariable =>
if (!namedVariablesProvidedByChildren.contains(namedLambda.exprId)) {
usedReferences(namedLambda.exprId) = namedLambda.toAttribute
} // else it is provided by something else so ignore it
case _ => // ignored
}
val references = usedReferences.toSeq.sortBy(_._1.id)
// The format of the columnar batch passed to `lambdaFunction` will be
// `references ++ lambdaFunction.arguments` We are going to take the references
// and turn them into bound references from `input` so the bound version of this operator
// knows how to create the `references` part of the batch that is passed down.
val boundIntermediate = references.map {
case (_, att) => GpuBindReferences.bindGpuReference(att, input)
}
// Now get the full set of attributes that we will pass to `lambdaFunction` so any nested
// higher order functions know how to bind their arguments, and also so we can build a
// mapping to know how to replace expressions
val argsAndReferences = references ++ lambdaFunction.arguments.map { expr =>
(expr.exprId, expr)
}
val argsAndRefsAtters = argsAndReferences.map {
case (_, named: NamedExpression) => named.toAttribute
}
val replacementMap = argsAndReferences.zipWithIndex.map {
case ((exprId, expr), ordinal) =>
(exprId, GpuBoundReference(ordinal, expr.dataType, expr.nullable)(exprId, expr.name))
}.toMap
// Now we actually bind all of the attribute references and GpuNamedLambdaVariables
// with the appropriate replacements.
val childFunction = GpuBindReferences.transformNoRecursionOnReplacement(lambdaFunction) {
case bind: GpuBind =>
bind.bind(argsAndRefsAtters)
case a: AttributeReference =>
replacementMap(a.exprId)
case lr: GpuNamedLambdaVariable if replacementMap.contains(lr.exprId) =>
replacementMap(lr.exprId)
}
val boundFunc =
GpuLambdaFunction(childFunction, lambdaFunction.arguments, lambdaFunction.hidden)
(boundFunc, boundArg, boundIntermediate)
}
}
trait GpuArrayTransformBase extends GpuSimpleHigherOrderFunction {
def isBound: Boolean
def boundIntermediate: Seq[GpuExpression]
protected lazy val inputToLambda: Seq[DataType] = {
assert(isBound)
boundIntermediate.map(_.dataType) ++ lambdaFunction.arguments.map(_.dataType)
}
private[this] def makeElementProjectBatch(
inputBatch: ColumnarBatch,
argColumn: GpuColumnVector): ColumnarBatch = {
assert(argColumn.getBase.getType.equals(DType.LIST))
assert(isBound, "Trying to execute an un-bound transform expression")
def projectAndExplode(explodeOp: Table => Table): Table = {
withResource(GpuProjectExec.project(inputBatch, boundIntermediate)) {
intermediateBatch =>
withResource(GpuColumnVector.appendColumns(intermediateBatch, argColumn)) {
projectedBatch =>
withResource(GpuColumnVector.from(projectedBatch)) { projectedTable =>
explodeOp(projectedTable)
}
}
}
}
if (function.asInstanceOf[GpuLambdaFunction].arguments.length >= 2) {
// Need to do an explodePosition
val explodedTable = projectAndExplode { projectedTable =>
projectedTable.explodePosition(boundIntermediate.length)
}
val reorderedTable = withResource(explodedTable) { explodedTable =>
// The column order is wrong after an explodePosition. It is
// [other_columns*, position, entry]
// but we want
// [other_columns*, entry, position]
// So we have to remap it
val cols = new Array[cudf.ColumnVector](explodedTable.getNumberOfColumns)
val numOtherColumns = explodedTable.getNumberOfColumns - 2
(0 until numOtherColumns).foreach { index =>
cols(index) = explodedTable.getColumn(index)
}
cols(numOtherColumns) = explodedTable.getColumn(numOtherColumns + 1)
cols(numOtherColumns + 1) = explodedTable.getColumn(numOtherColumns)
new cudf.Table(cols: _*)
}
withResource(reorderedTable) { reorderedTable =>
GpuColumnVector.from(reorderedTable, inputToLambda.toArray)
}
} else {
// Need to do an explode
val explodedTable = projectAndExplode { projectedTable =>
projectedTable.explode(boundIntermediate.length)
}
withResource(explodedTable) { explodedTable =>
GpuColumnVector.from(explodedTable, inputToLambda.toArray)
}
}
}
/*
* Post-process the column view of the array after applying the function parameter.
* @param lambdaTransformedCV the results of the lambda expression running
* @param arg the original input array from the expression.
*/
protected def transformListColumnView(
lambdaTransformedCV: cudf.ColumnView,
arg: cudf.ColumnView): GpuColumnVector
override def columnarEval(batch: ColumnarBatch): GpuColumnVector = {
withResource(argument.columnarEval(batch)) { arg =>
val dataCol = withResource(makeElementProjectBatch(batch, arg)) { cb =>
function.columnarEval(cb)
}
withResource(dataCol) { _ =>
val cv = GpuListUtils.replaceListDataColumnAsView(arg.getBase, dataCol.getBase)
withResource(cv) { cv =>
transformListColumnView(cv, arg.getBase)
}
}
}
}
}
case class GpuArrayTransform(
argument: Expression,
function: Expression,
isBound: Boolean = false,
boundIntermediate: Seq[GpuExpression] = Seq.empty) extends GpuArrayTransformBase {
override def dataType: ArrayType = ArrayType(function.dataType, function.nullable)
override def prettyName: String = "transform"
override def bind(input: AttributeSeq): GpuExpression = {
val (boundFunc, boundArg, boundIntermediate) = bindLambdaFunc(input)
GpuArrayTransform(boundArg, boundFunc, isBound = true, boundIntermediate)
}
override protected def transformListColumnView(
lambdaTransformedCV: cudf.ColumnView, arg: cudf.ColumnView): GpuColumnVector = {
GpuColumnVector.from(lambdaTransformedCV.copyToColumnVector(), dataType)
}
}
case class GpuArrayExists(
argument: Expression,
function: Expression,
followThreeValuedLogic: Boolean,
isBound: Boolean = false,
boundIntermediate: Seq[GpuExpression] = Seq.empty) extends GpuArrayTransformBase {
override def dataType: DataType = BooleanType
override def prettyName: String = "exists"
override def nullable: Boolean = super.nullable || function.nullable
override def bind(input: AttributeSeq): GpuExpression = {
val (boundFunc, boundArg, boundIntermediate) = bindLambdaFunc(input)
GpuArrayExists(boundArg, boundFunc, followThreeValuedLogic,isBound = true, boundIntermediate)
}
private def imputeFalseForEmptyArrays(
transformedCV: cudf.ColumnView,
result: cudf.ColumnView
): GpuColumnVector = {
val isEmptyList = withResource(cudf.Scalar.fromInt(0)) { zeroScalar =>
withResource(transformedCV.countElements()) {
_.equalTo(zeroScalar)
}
}
withResource(isEmptyList) { _ =>
withResource(cudf.Scalar.fromBool(false)) { falseScalar =>
GpuColumnVector.from(isEmptyList.ifElse(falseScalar, result), dataType)
}
}
}
private def existsReduce(columnView: cudf.ColumnView, nullPolicy: cudf.NullPolicy) = {
columnView.listReduce(
cudf.SegmentedReductionAggregation.any(),
nullPolicy,
DType.BOOL8)
}
/*
* The difference between legacyExists and EXCLUDE nulls reduction
* is that the list without valid values (all nulls) should produce false
* which is equivalent to replacing nulls with false after lambda prior
* to aggregation
*/
private def legacyExists(cv: cudf.ColumnView): cudf.ColumnView = {
withResource(cudf.Scalar.fromBool(false)) { falseScalar =>
withResource(cv.getChildColumnView(0)) { childView =>
withResource(childView.replaceNulls(falseScalar)) { noNullsChildView =>
withResource(cv.replaceListChild(noNullsChildView)) { reduceInput =>
existsReduce(reduceInput, cudf.NullPolicy.EXCLUDE)
}
}
}
}
}
/*
* 3VL is true if EXCLUDE nulls reduce is true
* 3VL is false if INCLUDE nulls reduce is false
* 3VL is null if
* EXCLUDE null reduce is false and
* INCLUDE nulls reduce is null
*/
private def threeValueExists(cv: cudf.ColumnView): cudf.ColumnView = {
withResource(existsReduce(cv, cudf.NullPolicy.EXCLUDE)) { existsNullsExcludedCV =>
withResource(existsReduce(cv, cudf.NullPolicy.INCLUDE)) { existsNullsIncludedCV =>
existsNullsExcludedCV.ifElse(existsNullsExcludedCV, existsNullsIncludedCV)
}
}
}
private def exists(cv: cudf.ColumnView) = {
if (followThreeValuedLogic) {
threeValueExists(cv)
} else {
legacyExists(cv)
}
}
override protected def transformListColumnView(
lambdaTransformedCV: cudf.ColumnView,
arg: cudf.ColumnView
): GpuColumnVector = {
withResource(exists(lambdaTransformedCV)) { existsCV =>
// exists is false for empty arrays
// post process empty arrays until cudf allows specifying
// the initial value for a list reduction (i.e. similar to Scala fold)
// https://github.com/rapidsai/cudf/issues/10455
imputeFalseForEmptyArrays(lambdaTransformedCV, existsCV)
}
}
}
case class GpuArrayFilter(
argument: Expression,
function: Expression,
isBound: Boolean = false,
boundIntermediate: Seq[GpuExpression] = Seq.empty) extends GpuArrayTransformBase {
override def dataType: DataType = argument.dataType
override def nodeName: String = "filter"
override def bind(input: AttributeSeq): GpuExpression = {
val (boundFunc, boundArg, boundIntermediate) = bindLambdaFunc(input)
GpuArrayFilter(boundArg, boundFunc,isBound = true, boundIntermediate)
}
override protected def transformListColumnView(lambdaTransformedCV: cudf.ColumnView,
arg: cudf.ColumnView): GpuColumnVector = {
closeOnExcept(arg.applyBooleanMask(lambdaTransformedCV)) { ret =>
GpuColumnVector.from(ret, dataType)
}
}
}
trait GpuMapSimpleHigherOrderFunction extends GpuSimpleHigherOrderFunction with GpuBind {
protected def isBound: Boolean
protected def boundIntermediate: Seq[GpuExpression]
protected lazy val inputToLambda: Seq[DataType] = {
assert(isBound)
boundIntermediate.map(_.dataType) ++ lambdaFunction.arguments.map(_.dataType)
}
protected def makeElementProjectBatch(
inputBatch: ColumnarBatch,
listColumn: cudf.ColumnVector): ColumnarBatch = {
assert(listColumn.getType.equals(DType.LIST))
assert(isBound, "Trying to execute an un-bound transform value expression")
// Need to do an explode followed by pulling out the key/value columns
val boundProject = boundIntermediate :+ argument
val explodedTable = withResource(GpuProjectExec.project(inputBatch, boundProject)) {
projectedBatch =>
withResource(GpuColumnVector.from(projectedBatch)) { projectedTable =>
projectedTable.explode(boundIntermediate.length)
}
}
val moddedTable = withResource(explodedTable) { explodedTable =>
// The last column is a struct column with key/values pairs in it. We need to pull them
// out into stand alone columns
val cols = new Array[cudf.ColumnVector](explodedTable.getNumberOfColumns + 1)
val numOtherColumns = explodedTable.getNumberOfColumns - 1
(0 until numOtherColumns).foreach { index =>
cols(index) = explodedTable.getColumn(index)
}
val keyValuePairColumn = explodedTable.getColumn(numOtherColumns)
val keyCol = withResource(
keyValuePairColumn.getChildColumnView(GpuMapUtils.KEY_INDEX)) { keyView =>
keyView.copyToColumnVector()
}
withResource(keyCol) { keyCol =>
val valCol = withResource(
keyValuePairColumn.getChildColumnView(GpuMapUtils.VALUE_INDEX)) { valueView =>
valueView.copyToColumnVector()
}
withResource(valCol) { valCol =>
cols(numOtherColumns) = keyCol
cols(numOtherColumns + 1) = valCol
new cudf.Table(cols: _*)
}
}
}
withResource(moddedTable) { moddedTable =>
GpuColumnVector.from(moddedTable, inputToLambda.toArray)
}
}
}
case class GpuTransformKeys(
argument: Expression,
function: Expression,
isBound: Boolean = false,
boundIntermediate: Seq[GpuExpression] = Seq.empty)
extends GpuMapSimpleHigherOrderFunction {
@transient lazy val MapType(keyType, valueType, valueContainsNull) = argument.dataType
override def dataType: DataType = MapType(function.dataType, valueType, valueContainsNull)
override def prettyName: String = "transform_keys"
private def exceptionOnDupKeys = SQLConf.get.getConf(SQLConf.MAP_KEY_DEDUP_POLICY) ==
SQLConf.MapKeyDedupPolicy.EXCEPTION.toString
override lazy val hasSideEffects: Boolean =
function.nullable || exceptionOnDupKeys || super.hasSideEffects
override def bind(input: AttributeSeq): GpuExpression = {
val (boundFunc, boundArg, boundIntermediate) = bindLambdaFunc(input)
GpuTransformKeys(boundArg, boundFunc, isBound = true, boundIntermediate)
}
override def columnarEval(batch: ColumnarBatch): GpuColumnVector = {
withResource(argument.columnarEval(batch)) { arg =>
val newKeysCol = withResource(makeElementProjectBatch(batch, arg.getBase)) { cb =>
function.columnarEval(cb)
}
withResource(newKeysCol) { newKeysCol =>
withResource(GpuMapUtils.replaceExplodedKeyAsView(arg.getBase, newKeysCol.getBase)) {
updatedMapView => {
GpuMapUtils.assertNoNullKeys(updatedMapView)
withResource(updatedMapView.dropListDuplicatesWithKeysValues()) { deduped =>
if (exceptionOnDupKeys) {
// Compare child data row count before and after removing duplicates to determine
// if there were duplicates.
withResource(deduped.getChildColumnView(0)) { a =>
withResource(updatedMapView.getChildColumnView(0)) { b =>
if (a.getRowCount != b.getRowCount) {
throw GpuMapUtils.duplicateMapKeyFoundError
}
}
}
}
GpuColumnVector.from(deduped.incRefCount(), dataType)
}
}
}
}
}
}
}
case class GpuTransformValues(
argument: Expression,
function: Expression,
isBound: Boolean = false,
boundIntermediate: Seq[GpuExpression] = Seq.empty)
extends GpuMapSimpleHigherOrderFunction {
@transient lazy val MapType(keyType, valueType, valueContainsNull) = argument.dataType
override def dataType: DataType = MapType(keyType, function.dataType, function.nullable)
override def prettyName: String = "transform_values"
override def bind(input: AttributeSeq): GpuExpression = {
val (boundFunc, boundArg, boundIntermediate) = bindLambdaFunc(input)
GpuTransformValues(boundArg, boundFunc, isBound = true, boundIntermediate)
}
override def columnarEval(batch: ColumnarBatch): GpuColumnVector = {
withResource(argument.columnarEval(batch)) { arg =>
val newValueCol = withResource(makeElementProjectBatch(batch, arg.getBase)) { cb =>
function.columnarEval(cb)
}
withResource(newValueCol) { newValueCol =>
withResource(GpuMapUtils.replaceExplodedValueAsView(arg.getBase, newValueCol.getBase)) {
updatedMapView =>
GpuColumnVector.from(updatedMapView.copyToColumnVector(), dataType)
}
}
}
}
}
case class GpuMapFilter(argument: Expression,
function: Expression,
isBound: Boolean = false,
boundIntermediate: Seq[GpuExpression] = Seq.empty)
extends GpuMapSimpleHigherOrderFunction {
override def dataType: DataType = argument.dataType
override def prettyName: String = "map_filter"
override def bind(input: AttributeSeq): GpuExpression = {
val (boundFunc, boundArg, boundIntermediate) = bindLambdaFunc(input)
GpuMapFilter(boundArg, boundFunc, isBound = true, boundIntermediate)
}
override def columnarEval(batch: ColumnarBatch): GpuColumnVector = {
withResource(argument.columnarEval(batch)) { mapArg =>
// `mapArg` is list of struct(key, value)
val plainBoolCol = withResource(makeElementProjectBatch(batch, mapArg.getBase)) { cb =>
function.columnarEval(cb)
}
withResource(plainBoolCol) { plainBoolCol =>
assert(plainBoolCol.dataType() == BooleanType, "map_filter should have a predicate filter")
withResource(mapArg.getBase.getListOffsetsView) { argOffsetsCv =>
// convert the one dimension plain bool column to list of bool column
withResource(plainBoolCol.getBase.makeListFromOffsets(mapArg.getRowCount, argOffsetsCv)) {
listOfBoolCv =>
// extract entries for each map in the `mapArg` column
// according to the `listOfBoolCv` column
// `mapArg` is a map column containing no duplicate keys and null keys,
// so no need to `assertNoNullKeys` and `assertNoDuplicateKeys` after the extraction
val retCv = mapArg.getBase.applyBooleanMask(listOfBoolCv)
GpuColumnVector.from(retCv, dataType)
}
}
}
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy