com.nvidia.spark.rapids.limit.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2020-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids
import scala.collection.mutable.ArrayBuffer
import ai.rapids.cudf.{NvtxColor, Table}
import com.nvidia.spark.rapids.Arm.{closeOnExcept, withResource}
import com.nvidia.spark.rapids.GpuMetric._
import com.nvidia.spark.rapids.RapidsPluginImplicits._
import com.nvidia.spark.rapids.RmmRapidsRetryIterator.{splitSpillableInHalfByRows, withRetry}
import com.nvidia.spark.rapids.SpillPriorities.ACTIVE_ON_DECK_PRIORITY
import com.nvidia.spark.rapids.shims.ShimUnaryExecNode
import org.apache.spark.TaskContext
import org.apache.spark.rapids.shims.GpuShuffleExchangeExec
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{Attribute, NamedExpression, SortOrder}
import org.apache.spark.sql.catalyst.plans.physical.{AllTuples, Distribution, Partitioning, SinglePartition}
import org.apache.spark.sql.catalyst.util.truncatedString
import org.apache.spark.sql.execution.{CollectLimitExec, LimitExec, SparkPlan, TakeOrderedAndProjectExec}
import org.apache.spark.sql.execution.exchange.ENSURE_REQUIREMENTS
import org.apache.spark.sql.vectorized.{ColumnarBatch, ColumnVector}
class GpuBaseLimitIterator(
input: Iterator[ColumnarBatch],
limit: Int,
offset: Int,
opTime: GpuMetric,
numOutputBatches: GpuMetric,
numOutputRows: GpuMetric) extends Iterator[ColumnarBatch] {
private var remainingLimit = limit - offset
private var remainingOffset = offset
override def hasNext: Boolean = (limit == -1 || remainingLimit > 0) && input.hasNext
override def next(): ColumnarBatch = {
if (!this.hasNext) {
throw new NoSuchElementException("Next on empty iterator")
}
var batch = input.next()
val numCols = batch.numCols()
// In each partition, we need to skip `offset` rows
while (batch != null && remainingOffset >= batch.numRows()) {
remainingOffset -= batch.numRows()
batch.safeClose()
batch = if (this.hasNext) {
input.next()
} else {
null
}
}
// If the last batch is null, then we have offset >= numRows in this partition.
// In such case, we should return an empty batch
if (batch == null || batch.numRows() == 0) {
return new ColumnarBatch(new ArrayBuffer[GpuColumnVector](numCols).toArray, 0)
}
// Here 0 <= remainingOffset < batch.numRow(), we need to get batch[remainingOffset:]
withResource(new NvtxWithMetrics("limit and offset", NvtxColor.ORANGE, opTime)) { _ =>
var result: ColumnarBatch = null
// limit < 0 (limit == -1) denotes there is no limitation, so when
// (remainingOffset == 0 && (remainingLimit >= batch.numRows() || limit < 0)) is true,
// we can take this batch completely
if (remainingOffset == 0 && (remainingLimit >= batch.numRows() || limit < 0)) {
result = batch
} else {
// otherwise, we need to slice batch with (remainingOffset, remainingLimit).
// And remainingOffset > 0 will be used only once, for the latter batches in this
// partition, set remainingOffset = 0
val length = if (remainingLimit >= batch.numRows() || limit < 0) {
batch.numRows()
} else {
remainingLimit
}
val scb = closeOnExcept(batch) { _ =>
SpillableColumnarBatch(batch, SpillPriorities.ACTIVE_ON_DECK_PRIORITY)
}
result = sliceBatchAndCloseWithRetry(scb, remainingOffset, length)
remainingOffset = 0
}
remainingLimit -= result.numRows()
numOutputBatches += 1
numOutputRows += result.numRows()
result
}
}
private def sliceBatchAndCloseWithRetry(
spillBatch: SpillableColumnarBatch,
start: Int,
length: Int): ColumnarBatch = {
val end = Math.min(start + length, spillBatch.numRows())
RmmRapidsRetryIterator.withRetryNoSplit(spillBatch) { _ =>
withResource(spillBatch.getColumnarBatch()) { batch =>
val subCols = (0 until batch.numCols()).safeMap { i =>
val col = batch.column(i).asInstanceOf[GpuColumnVector]
val subVector = col.getBase.subVector(start, end)
assert(subVector != null)
GpuColumnVector.from(subVector, col.dataType)
}
new ColumnarBatch(subCols.toArray, end - start)
}
}
}
}
/**
* Helper trait which defines methods that are shared by both
* [[GpuLocalLimitExec]] and [[GpuGlobalLimitExec]].
*/
trait GpuBaseLimitExec extends LimitExec with GpuExec with ShimUnaryExecNode {
override lazy val additionalMetrics: Map[String, GpuMetric] = Map(
OP_TIME -> createNanoTimingMetric(MODERATE_LEVEL, DESCRIPTION_OP_TIME)
)
override def output: Seq[Attribute] = child.output
// The same as what feeds us, even though we might make it smaller
// the reality is that nothing is coming out after this, so it does fit
// the requirements
override def outputBatching: CoalesceGoal = GpuExec.outputBatching(child)
override def outputPartitioning: Partitioning = child.outputPartitioning
override def outputOrdering: Seq[SortOrder] = child.outputOrdering
protected override def doExecute(): RDD[InternalRow] =
throw new IllegalStateException(s"Row-based execution should not occur for $this")
override def internalDoExecuteColumnar(): RDD[ColumnarBatch] = {
sliceRDD(child.executeColumnar(), limit, 0)
}
protected def sliceRDD(rdd: RDD[ColumnarBatch], limit: Int, offset: Int): RDD[ColumnarBatch] = {
val opTime = gpuLongMetric(OP_TIME)
val numOutputRows = gpuLongMetric(NUM_OUTPUT_ROWS)
val numOutputBatches = gpuLongMetric(NUM_OUTPUT_BATCHES)
rdd.mapPartitions { iter =>
new GpuBaseLimitIterator(iter, limit, offset, opTime, numOutputBatches, numOutputRows)
}
}
}
/**
* Take the first `limit` elements of each child partition, but do not collect or shuffle them.
*/
case class GpuLocalLimitExec(limit: Int, child: SparkPlan) extends GpuBaseLimitExec
/**
* Take the first `limit` elements of the child's single output partition.
*/
case class GpuGlobalLimitExec(limit: Int = -1, child: SparkPlan,
offset: Int = 0) extends GpuBaseLimitExec {
// In CPU code of spark, there is an assertion 'limit >= 0 || (limit == -1 && offset > 0)'.
override def requiredChildDistribution: List[Distribution] = AllTuples :: Nil
override def internalDoExecuteColumnar(): RDD[ColumnarBatch] = {
super.sliceRDD(child.executeColumnar(), limit, offset)
}
}
class GpuCollectLimitMeta(
collectLimit: CollectLimitExec,
conf: RapidsConf,
parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule)
extends SparkPlanMeta[CollectLimitExec](collectLimit, conf, parent, rule) {
override val childParts: scala.Seq[PartMeta[_]] =
Seq(GpuOverrides.wrapPart(collectLimit.outputPartitioning, conf, Some(this)))
override def convertToGpu(): GpuExec =
GpuGlobalLimitExec(collectLimit.limit,
GpuShuffleExchangeExec(
GpuSinglePartitioning,
GpuLocalLimitExec(collectLimit.limit, childPlans.head.convertIfNeeded()),
ENSURE_REQUIREMENTS
)(SinglePartition), 0)
}
object GpuTopN {
private[this] def concatAndClose(a: ColumnarBatch,
b: ColumnarBatch,
concatTime: GpuMetric): ColumnarBatch = {
withResource(new NvtxWithMetrics("readNConcat", NvtxColor.CYAN, concatTime)) { _ =>
val dataTypes = GpuColumnVector.extractTypes(b)
val aTable = withResource(a) { a =>
GpuColumnVector.from(a)
}
val ret = withResource(aTable) { aTable =>
withResource(b) { b =>
withResource(GpuColumnVector.from(b)) { bTable =>
Table.concatenate(aTable, bTable)
}
}
}
withResource(ret) { ret =>
GpuColumnVector.from(ret, dataTypes)
}
}
}
private[this] def sliceBatch(batch: ColumnarBatch, begin: Int, limit: Int): ColumnarBatch = {
val end = Math.min(limit, batch.numRows())
val start = Math.max(0, Math.min(begin, end))
val numColumns = batch.numCols()
closeOnExcept(new Array[ColumnVector](numColumns)) { columns =>
val bases = GpuColumnVector.extractBases(batch)
(0 until numColumns).foreach { i =>
columns(i) =
GpuColumnVector.from(bases(i).subVector(start, end), batch.column(i).dataType())
}
new ColumnarBatch(columns, end - start)
}
}
private[this] def takeN(batch: ColumnarBatch, count: Int): ColumnarBatch = {
sliceBatch(batch, 0, count)
}
private[this] def applyOffset(batch: ColumnarBatch, offset: Int): ColumnarBatch = {
sliceBatch(batch, offset, batch.numRows())
}
def sortAndTakeNClose(limit: Int,
sorter: GpuSorter,
batch: ColumnarBatch,
sortTime: GpuMetric): ColumnarBatch = {
withResource(batch) { _ =>
withResource(sorter.fullySortBatch(batch, sortTime)) { sorted =>
takeN(sorted, limit)
}
}
}
def apply(limit: Int,
sorter: GpuSorter,
iter: Iterator[ColumnarBatch],
opTime: GpuMetric,
sortTime: GpuMetric,
concatTime: GpuMetric,
inputBatches: GpuMetric,
inputRows: GpuMetric,
outputBatches: GpuMetric,
outputRows: GpuMetric,
offset: Int): Iterator[SpillableColumnarBatch] =
new Iterator[SpillableColumnarBatch]() {
override def hasNext: Boolean = iter.hasNext
private[this] var pending: Option[SpillableColumnarBatch] = None
// Don't install the callback if in a unit test
Option(TaskContext.get()).foreach { tc =>
ScalableTaskCompletion.onTaskCompletion(tc) {
pending.foreach(_.safeClose())
}
}
override def next(): SpillableColumnarBatch = {
if (!hasNext) {
throw new NoSuchElementException()
}
while (iter.hasNext) {
val inputScb = closeOnExcept(iter.next()) { cb =>
inputBatches += 1
inputRows += cb.numRows()
SpillableColumnarBatch(cb, SpillPriorities.ACTIVE_ON_DECK_PRIORITY)
}
withRetry(inputScb, splitSpillableInHalfByRows) { attempt =>
withResource(new NvtxWithMetrics("TOP N", NvtxColor.ORANGE, opTime)) { _ =>
val inputCb = attempt.getColumnarBatch()
if (pending.isEmpty) {
sortAndTakeNClose(limit, sorter, inputCb, sortTime)
} else { // pending is not empty
val totalSize = attempt.sizeInBytes + pending.get.sizeInBytes
val tmpCb = if (totalSize > Int.MaxValue) {
// The intermediate size is likely big enough we don't want to risk an overflow,
// so sort/slice before we concat and sort/slice again.
sortAndTakeNClose(limit, sorter, inputCb, sortTime)
} else {
// The intermediate size looks like we could never overflow the indexes so
// do it the more efficient way and concat first followed by the sort/slice
inputCb
}
val pendingCb = closeOnExcept(tmpCb) { _ =>
pending.get.getColumnarBatch()
}
sortAndTakeNClose(limit, sorter, concatAndClose(pendingCb, tmpCb, concatTime),
sortTime)
}
}
}.foreach { runningResult =>
pending.foreach(_.close())
pending = None
pending = closeOnExcept(runningResult) { _ =>
Some(SpillableColumnarBatch(runningResult, ACTIVE_ON_DECK_PRIORITY))
}
}
} // end of while
val tempScb = pending.get
pending = None
val ret = if (offset > 0) {
val retCb = RmmRapidsRetryIterator.withRetryNoSplit(tempScb) { _ =>
withResource(new NvtxWithMetrics("TOP N Offset", NvtxColor.ORANGE, opTime)) { _ =>
withResource(tempScb.getColumnarBatch()) { tempCb =>
applyOffset(tempCb, offset)
}
}
}
closeOnExcept(retCb)(SpillableColumnarBatch(_, ACTIVE_ON_DECK_PRIORITY))
} else {
tempScb
}
outputBatches += 1
outputRows += ret.numRows()
ret
}
}
}
/**
* Take the first limit elements as defined by the sortOrder, and do projection if needed.
* This is logically equivalent to having a Limit operator after a `SortExec` operator,
* or having a `ProjectExec` operator between them.
* This could have been named TopK, but Spark's top operator does the opposite in ordering
* so we name it TakeOrdered to avoid confusion.
*/
case class GpuTopN(
limit: Int,
gpuSortOrder: Seq[SortOrder],
projectList: Seq[NamedExpression],
child: SparkPlan,
offset: Int = 0)(
cpuSortOrder: Seq[SortOrder]) extends GpuBaseLimitExec {
override def otherCopyArgs: Seq[AnyRef] = cpuSortOrder :: Nil
override def output: Seq[Attribute] = {
projectList.map(_.toAttribute)
}
protected override val outputRowsLevel: MetricsLevel = ESSENTIAL_LEVEL
protected override val outputBatchesLevel: MetricsLevel = MODERATE_LEVEL
override lazy val additionalMetrics: Map[String, GpuMetric] = Map(
NUM_INPUT_ROWS -> createMetric(DEBUG_LEVEL, DESCRIPTION_NUM_INPUT_ROWS),
NUM_INPUT_BATCHES -> createMetric(DEBUG_LEVEL, DESCRIPTION_NUM_INPUT_BATCHES),
OP_TIME -> createNanoTimingMetric(MODERATE_LEVEL, DESCRIPTION_OP_TIME),
SORT_TIME -> createNanoTimingMetric(DEBUG_LEVEL, DESCRIPTION_SORT_TIME),
CONCAT_TIME -> createNanoTimingMetric(DEBUG_LEVEL, DESCRIPTION_CONCAT_TIME)
)
override def internalDoExecuteColumnar(): RDD[ColumnarBatch] = {
val sorter = new GpuSorter(gpuSortOrder, child.output)
val boundProjectExprs = GpuBindReferences.bindGpuReferences(projectList, child.output)
val opTime = gpuLongMetric(OP_TIME)
val inputBatches = gpuLongMetric(NUM_INPUT_BATCHES)
val inputRows = gpuLongMetric(NUM_INPUT_ROWS)
val outputBatches = gpuLongMetric(NUM_OUTPUT_BATCHES)
val outputRows = gpuLongMetric(NUM_OUTPUT_ROWS)
val sortTime = gpuLongMetric(SORT_TIME)
val concatTime = gpuLongMetric(CONCAT_TIME)
val localLimit = limit
val localProjectList = projectList
val childOutput = child.output
child.executeColumnar().mapPartitions { iter =>
val topN = GpuTopN(localLimit, sorter, iter, opTime, sortTime, concatTime,
inputBatches, inputRows, outputBatches, outputRows, offset)
if (localProjectList != childOutput) {
topN.map { scb =>
opTime.ns {
GpuProjectExec.projectAndCloseWithRetrySingleBatch(scb, boundProjectExprs)
}
}
} else {
topN.map { scb =>
opTime.ns {
RmmRapidsRetryIterator.withRetryNoSplit(scb)(_.getColumnarBatch())
}
}
}
}
}
protected override def doExecute(): RDD[InternalRow] =
throw new IllegalStateException(s"Row-based execution should not occur for $this")
override def outputOrdering: Seq[SortOrder] = cpuSortOrder
override def outputPartitioning: Partitioning = SinglePartition
override def simpleString(maxFields: Int): String = {
val orderByString = truncatedString(gpuSortOrder, "[", ",", "]", maxFields)
val outputString = truncatedString(output, "[", ",", "]", maxFields)
s"GpuTopN(limit=$limit, orderBy=$orderByString, output=$outputString, offset=$offset)"
}
}
case class GpuTakeOrderedAndProjectExecMeta(
takeExec: TakeOrderedAndProjectExec,
rapidsConf: RapidsConf,
parentOpt: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule
) extends SparkPlanMeta[TakeOrderedAndProjectExec](takeExec, rapidsConf, parentOpt, rule) {
val sortOrder: Seq[BaseExprMeta[SortOrder]] =
takeExec.sortOrder.map(GpuOverrides.wrapExpr(_, this.conf, Some(this)))
private val projectList: Seq[BaseExprMeta[NamedExpression]] =
takeExec.projectList.map(GpuOverrides.wrapExpr(_, this.conf, Some(this)))
override val childExprs: Seq[BaseExprMeta[_]] = sortOrder ++ projectList
override def convertToGpu(): GpuExec = {
// To avoid metrics confusion we split a single stage up into multiple parts but only
// if there are multiple partitions to make it worth doing.
val so = sortOrder.map(_.convertToGpu().asInstanceOf[SortOrder])
if (takeExec.child.outputPartitioning.numPartitions == 1) {
GpuTopN(takeExec.limit, so,
projectList.map(_.convertToGpu().asInstanceOf[NamedExpression]),
childPlans.head.convertIfNeeded())(takeExec.sortOrder)
} else {
GpuTopN(
takeExec.limit,
so,
projectList.map(_.convertToGpu().asInstanceOf[NamedExpression]),
GpuShuffleExchangeExec(
GpuSinglePartitioning,
GpuTopN(
takeExec.limit,
so,
takeExec.child.output,
childPlans.head.convertIfNeeded())(takeExec.sortOrder),
ENSURE_REQUIREMENTS
)(SinglePartition)
)(takeExec.sortOrder)
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy