com.nvidia.spark.rapids.profiler.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids
import java.lang.reflect.Method
import java.nio.ByteBuffer
import java.nio.channels.{Channels, WritableByteChannel}
import java.util.concurrent.{ConcurrentHashMap, Future, ScheduledExecutorService, TimeUnit}
import scala.collection.mutable
import com.nvidia.spark.rapids.jni.Profiler
import org.apache.hadoop.fs.Path
import org.apache.spark.{SparkContext, TaskContext}
import org.apache.spark.api.plugin.PluginContext
import org.apache.spark.internal.Logging
import org.apache.spark.io.CompressionCodec
import org.apache.spark.scheduler.{SparkListener, SparkListenerJobEnd, SparkListenerStageCompleted}
import org.apache.spark.sql.rapids.execution.TrampolineUtil
import org.apache.spark.util.SerializableConfiguration
object ProfilerOnExecutor extends Logging {
private val jobPattern = raw"SPARK_.*_JId_([0-9]+).*".r
private var writer: Option[ProfileWriter] = None
private var timeRanges: Option[Seq[(Long, Long)]] = None
private var jobRanges: RangeConfMatcher = null
private var stageRanges: RangeConfMatcher = null
// NOTE: Active sets are updated asynchronously, synchronize on ProfilerOnExecutor to access
private val activeJobs = mutable.HashSet[Int]()
private val activeStages = mutable.HashSet[Int]()
private var timer: Option[ScheduledExecutorService] = None
private var timerFuture: Option[Future[_]] = None
private var driverPollMillis = 0
private val startTimestamp = System.nanoTime()
private var isProfileActive = false
private var currentContextMethod: Method = null
private var getContextMethod: Method = null
def init(pluginCtx: PluginContext, conf: RapidsConf): Unit = {
require(writer.isEmpty, "Already initialized")
timeRanges = conf.profileTimeRangesSeconds.map(parseTimeRanges)
jobRanges = new RangeConfMatcher(conf, RapidsConf.PROFILE_JOBS)
stageRanges = new RangeConfMatcher(conf, RapidsConf.PROFILE_STAGES)
driverPollMillis = conf.profileDriverPollMillis
if (timeRanges.isDefined && (stageRanges.nonEmpty || jobRanges.nonEmpty)) {
throw new UnsupportedOperationException(
"Profiling with time ranges and stage or job ranges simultaneously is not supported")
}
if (jobRanges.nonEmpty) {
// Hadoop's CallerContext is used to identify the job ID of a task on the executor.
val callerContextClass = TrampolineUtil.classForName("org.apache.hadoop.ipc.CallerContext")
currentContextMethod = callerContextClass.getMethod("getCurrent")
getContextMethod = callerContextClass.getMethod("getContext")
}
writer = conf.profilePath.flatMap { pathPrefix =>
val executorId = pluginCtx.executorID()
if (shouldProfile(executorId, conf)) {
logInfo("Initializing profiler")
if (jobRanges.nonEmpty) {
// Need caller context enabled to get the job ID of a task on the executor
TrampolineUtil.getSparkHadoopUtilConf.setBoolean("hadoop.caller.context.enabled", true)
}
val codec = conf.profileCompression match {
case "none" => None
case c => Some(TrampolineUtil.createCodec(pluginCtx.conf(), c))
}
val w = new ProfileWriter(pluginCtx, pathPrefix, codec)
val profilerConf = new Profiler.Config.Builder()
.withWriteBufferSize(conf.profileWriteBufferSize)
.withFlushPeriodMillis(conf.profileFlushPeriodMillis)
.withAllocAsyncCapturing(conf.profileAsyncAllocCapture)
.build()
Profiler.init(w, profilerConf)
Some(w)
} else {
None
}
}
writer.foreach { _ =>
updateAndSchedule()
}
}
def onTaskStart(): Unit = {
if (jobRanges.nonEmpty) {
val callerCtx = currentContextMethod.invoke(null)
if (callerCtx != null) {
getContextMethod.invoke(callerCtx).asInstanceOf[String] match {
case jobPattern(jid) =>
val jobId = jid.toInt
if (jobRanges.contains(jobId)) {
synchronized {
activeJobs.add(jobId)
enable()
startPollingDriver()
}
}
case _ =>
}
}
}
if (stageRanges.nonEmpty) {
val taskCtx = TaskContext.get
val stageId = taskCtx.stageId
if (stageRanges.contains(stageId)) {
synchronized {
activeStages.add(taskCtx.stageId)
enable()
startPollingDriver()
}
}
}
}
def shutdown(): Unit = {
writer.foreach { w =>
timerFuture.foreach(_.cancel(false))
timerFuture = None
Profiler.shutdown()
w.close()
}
writer = None
}
private def enable(): Unit = {
writer.foreach { w =>
if (!isProfileActive) {
Profiler.start()
isProfileActive = true
w.pluginCtx.send(ProfileStatusMsg(w.executorId, "profile started"))
}
}
}
private def disable(): Unit = {
writer.foreach { w =>
if (isProfileActive) {
Profiler.stop()
isProfileActive = false
w.pluginCtx.send(ProfileStatusMsg(w.executorId, "profile stopped"))
}
}
}
private def shouldProfile(executorId: String, conf: RapidsConf): Boolean = {
val matcher = new RangeConfMatcher(conf, RapidsConf.PROFILE_EXECUTORS)
matcher.contains(executorId)
}
private def parseTimeRanges(confVal: String): Seq[(Long, Long)] = {
val ranges = try {
confVal.split(',').map(RangeConfMatcher.parseRange).map {
case (start, end) =>
// convert relative time in seconds to absolute time in nanoseconds
(startTimestamp + TimeUnit.SECONDS.toNanos(start),
startTimestamp + TimeUnit.SECONDS.toNanos(end))
}
} catch {
case e: IllegalArgumentException =>
throw new IllegalArgumentException(
s"Invalid range settings for ${RapidsConf.PROFILE_TIME_RANGES_SECONDS}: $confVal", e)
}
ranges.sorted.toIndexedSeq
}
private def updateAndSchedule(): Unit = {
if (timeRanges.isDefined) {
if (timer.isEmpty) {
timer = Some(TrampolineUtil.newDaemonSingleThreadScheduledExecutor("profiler timer"))
}
val now = System.nanoTime()
// skip time ranges that have already passed
val currentRanges = timeRanges.get.dropWhile {
case (_, end) => end <= now
}
timeRanges = Some(currentRanges)
if (currentRanges.isEmpty) {
logWarning("No further time ranges to profile, shutting down")
shutdown()
} else {
currentRanges.headOption.foreach {
case (start, end) =>
val delay = if (start <= now) {
enable()
end - now
} else {
disable()
start - now
}
timerFuture = Some(timer.get.schedule(new Runnable {
override def run(): Unit = try {
updateAndSchedule()
} catch {
case e: Exception =>
logError(s"Error in profiler timer task", e)
}
}, delay, TimeUnit.NANOSECONDS))
}
}
} else if (jobRanges.nonEmpty || stageRanges.nonEmpty) {
// nothing to do yet, profiling will start when tasks for targeted job/stage are seen
} else {
enable()
}
}
private def startPollingDriver(): Unit = {
if (timerFuture.isEmpty) {
if (timer.isEmpty) {
timer = Some(TrampolineUtil.newDaemonSingleThreadScheduledExecutor("profiler timer"))
}
timerFuture = Some(timer.get.scheduleWithFixedDelay(() => try {
updateActiveFromDriver()
} catch {
case e: Exception =>
logError("Profiler timer task error: ", e)
}, driverPollMillis, driverPollMillis, TimeUnit.MILLISECONDS))
}
}
private def stopPollingDriver(): Unit = {
timerFuture.foreach(_.cancel(false))
timerFuture = None
}
private def updateActiveFromDriver(): Unit = {
writer.foreach { w =>
val (jobs, stages) = synchronized {
(activeJobs.toArray, activeStages.toArray)
}
val (completedJobs, completedStages, allDone) =
w.pluginCtx.ask(ProfileJobStageQueryMsg(jobs, stages))
.asInstanceOf[(Array[Int], Array[Int], Boolean)]
if (completedJobs.nonEmpty || completedStages.nonEmpty) {
synchronized {
completedJobs.foreach(activeJobs.remove)
completedStages.foreach(activeStages.remove)
if (activeJobs.isEmpty && activeStages.isEmpty) {
disable()
stopPollingDriver()
}
}
}
if (allDone) {
logWarning("No further jobs or stages to profile, shutting down")
shutdown()
}
}
}
}
class ProfileWriter(
val pluginCtx: PluginContext,
profilePathPrefix: String,
codec: Option[CompressionCodec]) extends Profiler.DataWriter with Logging {
val executorId: String = pluginCtx.executorID()
private val outPath = getOutputPath(profilePathPrefix, codec)
private val out = openOutput(codec)
private var isClosed = false
override def write(data: ByteBuffer): Unit = {
if (!isClosed) {
while (data.hasRemaining) {
out.write(data)
}
}
}
override def close(): Unit = {
if (!isClosed) {
isClosed = true
out.close()
logWarning(s"Profiling completed, output written to $outPath")
pluginCtx.send(ProfileEndMsg(executorId, outPath.toString))
}
}
private def getAppId: String = {
val appId = pluginCtx.conf.get("spark.app.id", "")
if (appId.isEmpty) {
java.lang.management.ManagementFactory.getRuntimeMXBean.getName
} else {
appId
}
}
private def getOutputPath(prefix: String, codec: Option[CompressionCodec]): Path = {
val parentDir = new Path(prefix)
val suffix = codec.map(c => "." + TrampolineUtil.getCodecShortName(c.getClass.getName))
.getOrElse("")
new Path(parentDir, s"rapids-profile-$getAppId-$executorId.bin$suffix")
}
private def openOutput(codec: Option[CompressionCodec]): WritableByteChannel = {
logWarning(s"Profiler initialized, output will be written to $outPath")
val hadoopConf = pluginCtx.ask(ProfileInitMsg(executorId, outPath.toString))
.asInstanceOf[SerializableConfiguration].value
val fs = outPath.getFileSystem(hadoopConf)
val fsStream = fs.create(outPath, false)
val outStream = codec.map(_.compressedOutputStream(fsStream)).getOrElse(fsStream)
Channels.newChannel(outStream)
}
}
object ProfilerOnDriver extends Logging {
private var hadoopConf: SerializableConfiguration = null
private var jobRanges: RangeConfMatcher = null
private var numJobsToProfile: Long = 0L
private var stageRanges: RangeConfMatcher = null
private var numStagesToProfile: Long = 0L
private val completedJobs = new ConcurrentHashMap[Int, Unit]()
private val completedStages = new ConcurrentHashMap[Int, Unit]()
private var isJobsStageProfilingComplete = false
def init(sc: SparkContext, conf: RapidsConf): Unit = {
// if no profile path, profiling is disabled and nothing to do
conf.profilePath.foreach { _ =>
hadoopConf = new SerializableConfiguration(sc.hadoopConfiguration)
jobRanges = new RangeConfMatcher(conf, RapidsConf.PROFILE_JOBS)
stageRanges = new RangeConfMatcher(conf, RapidsConf.PROFILE_STAGES)
if (jobRanges.nonEmpty || stageRanges.nonEmpty) {
numJobsToProfile = jobRanges.size
numStagesToProfile = stageRanges.size
if (jobRanges.nonEmpty) {
// Need caller context enabled to get the job ID of a task on the executor
try {
TrampolineUtil.classForName("org.apache.hadoop.ipc.CallerContext")
} catch {
case _: ClassNotFoundException =>
throw new UnsupportedOperationException(s"${RapidsConf.PROFILE_JOBS} requires " +
"Hadoop CallerContext which is unavailable.")
}
sc.getConf.set("hadoop.caller.context.enabled", "true")
}
sc.addSparkListener(Listener)
}
}
}
def handleMsg(m: ProfileMsg): AnyRef = m match {
case ProfileInitMsg(executorId, path) =>
logWarning(s"Profiling: Executor $executorId initialized profiler, writing to $path")
if (hadoopConf == null) {
throw new IllegalStateException("Hadoop configuration not set")
}
hadoopConf
case ProfileStatusMsg(executorId, msg) =>
logWarning(s"Profiling: Executor $executorId: $msg")
null
case ProfileJobStageQueryMsg(activeJobs, activeStages) =>
val filteredJobs = activeJobs.filter(j => completedJobs.containsKey(j))
val filteredStages = activeStages.filter(s => completedStages.containsKey(s))
(filteredJobs, filteredStages, isJobsStageProfilingComplete)
case ProfileEndMsg(executorId, path) =>
logWarning(s"Profiling: Executor $executorId ended profiling, profile written to $path")
null
case _ =>
throw new IllegalStateException(s"Unexpected profile msg: $m")
}
private object Listener extends SparkListener {
override def onJobEnd(jobEnd: SparkListenerJobEnd): Unit = {
val jobId = jobEnd.jobId
if (jobRanges.contains(jobId)) {
completedJobs.putIfAbsent(jobId, ())
isJobsStageProfilingComplete = completedJobs.size == numJobsToProfile &&
completedStages.size == numStagesToProfile
}
}
override def onStageCompleted(stageCompleted: SparkListenerStageCompleted): Unit = {
val stageId = stageCompleted.stageInfo.stageId
if (stageRanges.contains(stageId)) {
completedStages.putIfAbsent(stageId, ())
isJobsStageProfilingComplete = completedJobs.size == numJobsToProfile &&
completedStages.size == numStagesToProfile
}
}
}
}
trait ProfileMsg
case class ProfileInitMsg(executorId: String, path: String) extends ProfileMsg
case class ProfileStatusMsg(executorId: String, msg: String) extends ProfileMsg
case class ProfileEndMsg(executorId: String, path: String) extends ProfileMsg
// Reply is a tuple of:
// - array of jobs that have completed
// - array of stages that have completed
// - boolean if there are no further jobs/stages to profile
case class ProfileJobStageQueryMsg(
activeJobs: Array[Int],
activeStages: Array[Int]) extends ProfileMsg
© 2015 - 2024 Weber Informatics LLC | Privacy Policy