com.nvidia.spark.rapids.window.GpuUnboundedToUnboundedAggWindowExec.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids.window
import scala.collection.mutable.{ArrayBuffer, ListBuffer}
import scala.reflect.ClassTag
import ai.rapids.cudf
import com.nvidia.spark.rapids.{ConcatAndConsumeAll, GpuAlias, GpuBindReferences, GpuBoundReference, GpuColumnVector, GpuExpression, GpuLiteral, GpuMetric, GpuProjectExec, SpillableColumnarBatch, SpillPriorities}
import com.nvidia.spark.rapids.Arm.{closeOnExcept, withResource}
import com.nvidia.spark.rapids.RapidsPluginImplicits.AutoCloseableProducingSeq
import com.nvidia.spark.rapids.RmmRapidsRetryIterator.{splitSpillableInHalfByRows, withRetry, withRetryNoSplit}
import com.nvidia.spark.rapids.ScalableTaskCompletion.onTaskCompletion
import com.nvidia.spark.rapids.window.TableAndBatchUtils.{adoptAndMakeSpillable, getTableSlice, sliceAndMakeSpillable, toSpillableBatch, toTable}
import java.util
import org.apache.spark.TaskContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.expressions.{Attribute, AttributeReference, Expression, NamedExpression, SortOrder}
import org.apache.spark.sql.execution.SparkPlan
import org.apache.spark.sql.rapids.aggregate.{CudfAggregate, GpuAggregateExpression, GpuAggregateFunction, GpuCount}
import org.apache.spark.sql.types.{DataType, IntegerType, LongType}
import org.apache.spark.sql.vectorized.{ColumnarBatch, ColumnVector}
/**
* Just a simple wrapper to make working with buffers of AutoClosable things play
* nicely with withResource.
*/
class AutoClosableArrayBuffer[T <: AutoCloseable]() extends AutoCloseable {
private val data = new ArrayBuffer[T]()
def append(scb: T): Unit = data.append(scb)
def last: T = data.last
def removeLast(): T = data.remove(data.length - 1)
def foreach[U](f: T => U): Unit = data.foreach(f)
def toArray[B >: T : ClassTag]: Array[B] = data.toArray
override def toString: String = s"AutoCloseable(${super.toString})"
override def close(): Unit = {
data.foreach(_.close())
data.clear()
}
}
/**
* Utilities for conversion between SpillableColumnarBatch, ColumnarBatch, and cudf.Table.
*/
object TableAndBatchUtils {
/**
* Constructs SpillableColumnarBatch from ColumnarBatch `cb`.
* The new SpillableColumnarBatch takes ownership of `cb`, so the caller
* should not be closing `cb` after the call.
* The returned SpillableColumnarBatch needs to be closed by the caller
* after use.
*/
def adoptAndMakeSpillable(cb: ColumnarBatch): SpillableColumnarBatch = {
SpillableColumnarBatch(cb, SpillPriorities.ACTIVE_BATCHING_PRIORITY)
}
/**
* Constructs a SpillableColumnarBatch from the `table` and `types` specified.
* The argument `table` is not closed by this function.
* The resultant SpillableColumnarBatch needs to be closed by the caller
* after use.
*/
def toSpillableBatch(table: cudf.Table, types: Seq[DataType]): SpillableColumnarBatch = {
adoptAndMakeSpillable(GpuColumnVector.from(table, types.toArray))
}
/**
* Shorthand function to construct a cudf.Table from a ColumnarBatch.
* The columns in the ColumnarBatch will have their reference counts incremented,
* when the new Table is constructed.
* Both the argument and the returned Table need to be closed by the caller,
* after use.
*/
def toTable(cb: ColumnarBatch): cudf.Table = GpuColumnVector.from(cb)
/**
* Gets a rectangular slice of the specified cudf.Table, with
* rows [beginRow, endRow) of columns [beginCol, endCol).
* The argument `tbl` is not closed by the function. The caller needs to close,
* or otherwise manage its lifetime.
* The returned Table is owned by the caller, and needs to be closed after use.
*/
def getTableSlice(tbl: cudf.Table,
beginRow: Int, endRow: Int,
beginCol: Int, endCol: Int): cudf.Table = {
val projectedColumns =
Range(beginCol, endCol).map { i => tbl.getColumn(i).slice(beginRow, endRow).head }
withResource(projectedColumns) { _ =>
new cudf.Table(projectedColumns.toArray: _*)
}
}
/**
* Gets a rectangular slice of the specified cudf.Table, with rows [beginRow, endRow)
* of all its columns, and returns the result as a new cudf.Table.
* The argument `tbl` is not closed by the function. The caller needs to close,
* or otherwise manage its lifetime.
* The returned Table is owned by the caller, and needs to be closed after use.
*/
def getTableSlice(tbl: cudf.Table, beginRow: Int, endRow: Int): cudf.Table = {
getTableSlice(tbl, beginRow, endRow, beginCol=0, endCol=tbl.getNumberOfColumns)
}
/**
* Gets a rectangular slice of the specified cudf.Table, with rows [beginRow, endRow)
* of all its columns, and converts the result into a SpillableColumnarBatch.
* The argument `tbl` is not closed by the function. The caller needs to close,
* or otherwise manage its lifetime.
* The returned SpillableColumnarBatch is owned by the caller, and needs to be
* closed after use.
*/
def sliceAndMakeSpillable(tbl: cudf.Table,
rowBegin: Int,
rowEnd: Int,
dataTypes: Seq[DataType]): SpillableColumnarBatch = {
withResource(getTableSlice(tbl, rowBegin, rowEnd)) { sliced =>
adoptAndMakeSpillable(GpuColumnVector.from(sliced, dataTypes.toArray))
}
}
}
// It is not really simple to do a single iterator that can do the splits and retries along with
// The data as needed. Instead we are going to decompose the problem into multiple iterators that
// feed into each other.
// The first pass iterator will take in a batch of data and produce one or more aggregated result
// pairs that include the ride-along columns with the aggregation results for that batch.
// Note that it is assumed that the aggregation was done as a sort based aggregation, so
// the ride-along columns and the aggregation result should both be sorted by the partition by
// columns. Also the aggregation result must have a count column so it can be expanded using
// repeat to get back to the size of the ride-along columns.
case class FirstPassAggResult(rideAlongColumns: SpillableColumnarBatch,
aggResult: SpillableColumnarBatch) extends AutoCloseable {
override def close(): Unit = {
rideAlongColumns.close()
aggResult.close()
}
}
class GpuUnboundedToUnboundedAggWindowFirstPassIterator(
input: Iterator[ColumnarBatch],
boundStages: GpuUnboundedToUnboundedAggStages,
opTime: GpuMetric) extends Iterator[FirstPassAggResult] {
private var subIterator: Option[Iterator[FirstPassAggResult]] = None
override def hasNext: Boolean = subIterator.exists(_.hasNext) || input.hasNext
private def getSpillableInputBatch: SpillableColumnarBatch = {
adoptAndMakeSpillable(input.next)
}
// "Fixes up" the count aggregate results, by casting up to INT64.
// TODO (future):
// Upscaling count results should happen via post aggregation projection.
// Refer to `postUpdate` in GpuAggregationExec.
private def upscaleCountResults(unfixed: cudf.Table): cudf.Table = {
// The group "count" result is in the last column, with type INT32.
// Cast this up to INT64. Return the other columns unchanged.
val nCols = unfixed.getNumberOfColumns
val fixedCols = Range(0, nCols).map {
case i if i != nCols-1 => unfixed.getColumn(i).incRefCount()
case _ => unfixed.getColumn(nCols - 1).castTo(cudf.DType.INT64)
}
withResource(fixedCols) { _ =>
new cudf.Table(fixedCols: _*)
}
}
// Append column at the end to account for the added `GpuCount(1)`.
private def preProcess(inputCB: ColumnarBatch): ColumnarBatch = {
withResource(GpuColumnVector.from(inputCB)) { inputTable =>
withResource(cudf.Scalar.fromInt(1)) { one =>
withResource(
cudf.ColumnVector.fromScalar(one,
inputTable.getColumn(0).getRowCount.asInstanceOf[Int])) { ones =>
val columns = Range(0, inputTable.getNumberOfColumns)
.map {inputTable.getColumn} :+ ones
withResource(new cudf.Table(columns: _*)) { preProcessedTable =>
GpuColumnVector.from(preProcessedTable,
boundStages.inputTypes.toArray :+ IntegerType)
}
}
}
}
}
private def groupByAggregate(inputCB: ColumnarBatch) = {
// Note: The data is always ordered first by the grouping keys,
// as ASC NULLS FIRST, regardless of how the order-by columns
// are ordered. This happens prior to the window exec, since
// the GpuSortOrder is upstream from the window exec.
val groupByOptions = cudf.GroupByOptions.builder()
.withIgnoreNullKeys(false)
.withKeysSorted(true)
.build()
val cudfAggregates = boundStages.cudfUpdateAggregates
val aggInputOrdinals = boundStages.aggInputOrdinals
val cudfAggsOnColumns = cudfAggregates.zip(aggInputOrdinals).map {
case (cudfAgg, ord) => cudfAgg.groupByAggregate.onColumn(ord)
}
withResource(GpuColumnVector.from(inputCB)) { inputTable =>
val aggResults = inputTable.groupBy(groupByOptions, boundStages.groupColumnOrdinals: _*)
.aggregate(cudfAggsOnColumns: _*)
// The COUNT aggregate result (at the end) is returned from libcudf as an INT32,
// while Spark expects an `INT64`. This needs to be scaled up.
withResource(aggResults) {
upscaleCountResults
}
}
}
override def next(): FirstPassAggResult = {
if (!hasNext) {
throw new NoSuchElementException()
}
if (subIterator.exists(_.hasNext)) {
subIterator.map(_.next()).get
} else {
val currIter = withRetry(getSpillableInputBatch, splitSpillableInHalfByRows) { scb =>
withResource(scb.getColumnarBatch()) { cb =>
withResource(preProcess(cb)) { preProcessedInput =>
withResource(groupByAggregate(preProcessedInput)) { aggResultTable =>
val rideAlongColumns = GpuProjectExec.project(preProcessedInput,
boundStages.boundRideAlong)
FirstPassAggResult(
adoptAndMakeSpillable(rideAlongColumns),
toSpillableBatch(aggResultTable,
boundStages.groupingColumnTypes ++ boundStages.aggResultTypes))
}
}
}
}
val result = currIter.next()
subIterator = Some(currIter)
result
}
}
}
/**
* Partitions the aggregation results from the first pass into two groups:
* 1. The aggregation results (and the corresponding rows in the ride-along column)
* belonging to the last group. This group is deemed currently incomplete,
* because the end of the group hasn't been encountered yet.
* 2. The aggregation results (and the corresponding rows in the ride-along column)
* belonging to all the preceding groups. All those groups are deemed complete.
* Note that PartitionedFirstPassAggResult is not constructed from FirstPassAggResult
* unless there are at least two distinct groups. (If there's only one group, it
* couldn't possibly be complete yet.)
*/
class PartitionedFirstPassAggResult(firstPassAggResult: FirstPassAggResult,
boundStages: GpuUnboundedToUnboundedAggStages) {
var lastGroupAggResult: Option[SpillableColumnarBatch] = None
var lastGroupRideAlong: Option[SpillableColumnarBatch] = None
var otherGroupAggResult: Option[SpillableColumnarBatch] = None
var otherGroupRideAlong: Option[SpillableColumnarBatch] = None
val numGroups: Int = firstPassAggResult.aggResult.numRows()
private val numGroupingKeys: Int = boundStages.boundPartitionSpec.size
private val numRideAlongRows: Int = firstPassAggResult.rideAlongColumns.numRows()
if (numGroups < 2) {
// This should not have been called if there was only one group.
throw new IllegalStateException("Expected at least two result groups.")
}
/**
* The `rideAlongGroupsTable` is the projection of the group rows from "rideAlong" columns
* from the first pass aggregation. There could well be repeats of the group values,
* once for every "rideAlong" row in the same group.
* The `aggResultTable` has one row per group; no repeats.
* This helper function finds the beginning index (in groupTable) for the last group
* in `aggResultTable`.
*/
private def getStartIndexForLastGroup(aggResultTable: cudf.Table,
rideAlongGroupsTable: cudf.Table): Int = {
val lastRowIndex = aggResultTable.getRowCount.asInstanceOf[Int] - 1
withResource(getTableSlice(aggResultTable,
beginRow = lastRowIndex,
endRow = lastRowIndex + 1,
beginCol = 0,
endCol = numGroupingKeys)) { group =>
// The grouping keys are always ordered ASC NULLS FIRST,
// regardless of how the order-by columns are ordered.
// Searching for a group does not involve the order-by columns in any way.
// A simple `lowerBound` does the trick.
val orderBys = Range(0, numGroupingKeys).map(i => cudf.OrderByArg.asc(i, true))
withResource(rideAlongGroupsTable.lowerBound(group, orderBys: _*)) { groupMargin =>
withResource(groupMargin.copyToHost()) { groupMarginHost =>
groupMarginHost.getInt(0)
}
}
}
}
withResource(firstPassAggResult.rideAlongColumns.getColumnarBatch()) { rideAlongCB =>
withResource(GpuProjectExec.project(rideAlongCB, boundStages.boundPartitionSpec)) { rideGrpCB =>
withResource(GpuColumnVector.from(rideGrpCB)) { rideAlongGroupsTable =>
withResource(firstPassAggResult.aggResult.getColumnarBatch()) { aggResultsCB =>
withResource(GpuColumnVector.from(aggResultsCB)) { aggResultTable =>
val lastGroupBeginIdx = getStartIndexForLastGroup(aggResultTable,
rideAlongGroupsTable)
withResource(GpuColumnVector.from(rideAlongCB)) { rideAlongTable =>
// Slice and dice!
val aggResultTypes = boundStages.groupingColumnTypes ++ boundStages.aggResultTypes
val rideAlongTypes = boundStages.rideAlongColumnTypes
lastGroupAggResult = Some(sliceAndMakeSpillable(aggResultTable,
numGroups - 1,
numGroups,
aggResultTypes))
lastGroupRideAlong = Some(sliceAndMakeSpillable(rideAlongTable,
lastGroupBeginIdx,
numRideAlongRows,
rideAlongTypes))
otherGroupAggResult = Some(sliceAndMakeSpillable(aggResultTable,
0,
numGroups - 1,
aggResultTypes))
otherGroupRideAlong = Some(sliceAndMakeSpillable(rideAlongTable,
0,
lastGroupBeginIdx,
rideAlongTypes))
}
}
}
}
}
}
} // class PartitionedFirstPassAggResult.
// The second pass through the data will take the output of the first pass. It will slice
// the result depending on if it knows that the group by keys is complete or not.
// Completed data will have the aggregation results merged into a single aggregation result
// Note that this aggregation result needs to remain sorted. The result is returned as
// an iterator of ride-along columns, and the full agg results for those columns. It is not
// the responsibility of the second stage to try and combine small batches or split up large
// ones, beyond what the retry framework might do.
case class SecondPassAggResult(rideAlongColumns: util.LinkedList[SpillableColumnarBatch],
aggResult: SpillableColumnarBatch) extends AutoCloseable {
override def close(): Unit = {
rideAlongColumns.forEach(_.close())
rideAlongColumns.clear()
aggResult.close()
}
}
class GpuUnboundedToUnboundedAggWindowSecondPassIterator(
input: Iterator[FirstPassAggResult],
boundStages: GpuUnboundedToUnboundedAggStages,
opTime: GpuMetric) extends Iterator[SecondPassAggResult] {
// input data where we don't know if the results are done yet
private var rideAlongColumnsPendingCompletion = new util.LinkedList[SpillableColumnarBatch]()
// Agg results where the input keys are not fully complete yet. They will need to be combined
// together before being returned.
// Agg results where the input keys are not fully complete yet. They will need to be combined
// together before being returned.
private var aggResultsPendingCompletion = ListBuffer.empty[SpillableColumnarBatch]
// Register cleanup for incomplete shutdown.
Option(TaskContext.get()).foreach { tc =>
onTaskCompletion(tc) {
Range(0, rideAlongColumnsPendingCompletion.size).foreach { i =>
rideAlongColumnsPendingCompletion.get(i).close()
}
aggResultsPendingCompletion.foreach{_.close}
}
}
override def hasNext: Boolean = (!rideAlongColumnsPendingCompletion.isEmpty) || input.hasNext
private def removeGroupColumns(aggResults: SpillableColumnarBatch): SpillableColumnarBatch = {
val aggResultTable = withResource(aggResults.getColumnarBatch()) { toTable }
val numColumnsToSkip = boundStages.boundPartitionSpec.size
val groupResultsRemovedCB = withResource(aggResultTable) {
GpuColumnVector.from(_, boundStages.aggResultTypes.toArray, numColumnsToSkip,
aggResultTable.getNumberOfColumns)
}
SpillableColumnarBatch(groupResultsRemovedCB, SpillPriorities.ACTIVE_BATCHING_PRIORITY)
}
/**
* Concatenates all underlying tables in `inputSCB`, and returns
* a SpillableColumnarBatch of the result.
*/
private def concat(inputSCB: Seq[SpillableColumnarBatch],
schema: Seq[DataType])
: SpillableColumnarBatch = {
val tables = inputSCB.map { scb =>
withResource(scb.getColumnarBatch()) {
toTable
}
}.toArray
val resultTable = if (tables.length == 1) {
tables.head
}
else {
withResource(tables) { _ =>
cudf.Table.concatenate(tables: _*)
}
}
withResource(resultTable) {
toSpillableBatch(_, schema)
}
}
private def groupByMerge(aggResultSCB: SpillableColumnarBatch) = {
// Note: The data is always ordered first by the grouping keys,
// as ASC NULLS FIRST, regardless of how the order-by columns
// are ordered. This happens prior to the window exec, since
// the GpuSortOrder is upstream from the window exec.
val groupByOptions = cudf.GroupByOptions.builder()
.withIgnoreNullKeys(false)
.withKeysSorted(true)
.build
val numGroupColumns = boundStages.groupingColumnTypes.size
val cudfMergeAggregates = boundStages.cudfMergeAggregates
val cudfAggsOnColumns = cudfMergeAggregates.zipWithIndex.map {
case (mergeAgg, ord) => mergeAgg.groupByAggregate.onColumn(ord + numGroupColumns)
}
val aggResultTable = withResource(aggResultSCB.getColumnarBatch()) { toTable }
val mergeResults = withResource(aggResultTable) {
_.groupBy(groupByOptions, Range(0, numGroupColumns).toArray: _*)
.aggregate(cudfAggsOnColumns: _*)
}
withResource(mergeResults) { _ =>
val mergeResultTypes = boundStages.groupingColumnTypes ++ boundStages.aggResultTypes
val cb = GpuColumnVector.from(mergeResults, mergeResultTypes.toArray)
SpillableColumnarBatch(cb, SpillPriorities.ACTIVE_BATCHING_PRIORITY)
}
}
private def processNewData(newData: FirstPassAggResult): Option[SecondPassAggResult] = {
if (newData.aggResult.numRows() == 1) {
// All the aggregation results are for the same group.
// Add the lot to "incomplete". No results with this input.
rideAlongColumnsPendingCompletion.add(newData.rideAlongColumns.incRefCount())
aggResultsPendingCompletion += newData.aggResult.incRefCount()
None
}
else {
opTime.ns {
// There are at least two aggregation result rows. i.e. At least 2 groups,
// implying that at least one group has seen completion.
// This may now be processed as follows:
// 1. Set aside the last agg result row (incomplete), and its rideAlong.
// 2. Append the rest of the results together. Run agg merge.
// 3. Save last agg result and rideAlong as currently incomplete.
// 4. Return merge results as the result batch.
val partitioned = withRetryNoSplit(newData) {
new PartitionedFirstPassAggResult(_, boundStages)
}
val completedAggResults =
aggResultsPendingCompletion ++ partitioned.otherGroupAggResult
val result = withRetryNoSplit(completedAggResults.toSeq) { completedAggResults =>
withResource(concat(completedAggResults,
boundStages.groupingColumnTypes ++
boundStages.aggResultTypes)) { concatAggResults =>
withResource(groupByMerge(concatAggResults)) { mergedAggResults =>
val completedRideAlongBatches =
rideAlongColumnsPendingCompletion.clone // Cloned for exception/retry safety.
.asInstanceOf[util.LinkedList[SpillableColumnarBatch]]
completedRideAlongBatches.add(partitioned.otherGroupRideAlong.get)
val groupsRemoved = removeGroupColumns(mergedAggResults)
SecondPassAggResult(completedRideAlongBatches,
groupsRemoved)
}
}
}
// Output has been calculated. Set last group's data in "pendingCompletion".
rideAlongColumnsPendingCompletion = new util.LinkedList[SpillableColumnarBatch]()
rideAlongColumnsPendingCompletion.add(partitioned.lastGroupRideAlong.get)
aggResultsPendingCompletion = ListBuffer.tabulate(1) { _ =>
partitioned.lastGroupAggResult.get
}
Some(result)
}
}
}
override def next(): SecondPassAggResult = {
if (!hasNext) {
throw new NoSuchElementException()
}
var output: Option[SecondPassAggResult] = None
while (output.isEmpty) {
if (input.hasNext) {
withResource(input.next()) { newData =>
output = processNewData(newData)
}
} else {
opTime.ns {
// No more input. All pending batches can now be assumed complete.
output = withRetryNoSplit(aggResultsPendingCompletion.toSeq) { aggResults =>
withResource(concat(aggResults,
boundStages.groupingColumnTypes ++
boundStages.aggResultTypes)) { concatAggResults =>
withResource(groupByMerge(concatAggResults)) { mergedAggResults =>
Some(SecondPassAggResult(rideAlongColumnsPendingCompletion,
removeGroupColumns(mergedAggResults)))
}
}
}
// Final output has been calculated. It is safe to reset the buffers.
aggResultsPendingCompletion = ListBuffer.empty[SpillableColumnarBatch]
rideAlongColumnsPendingCompletion = new util.LinkedList[SpillableColumnarBatch]
}
}
}
output.get
}
}
// The next to final step is to take the original input data along with the agg data, estimate how
// to split/combine the input batches to output batches that are close to the target batch size.
case class SlicedBySize(rideAlongColumns: SpillableColumnarBatch,
aggResults: SpillableColumnarBatch) extends AutoCloseable {
override def close(): Unit = {
rideAlongColumns.close()
aggResults.close()
}
}
object PendingSecondAggResults {
def apply(result: SecondPassAggResult,
boundStages: GpuUnboundedToUnboundedAggStages,
targetSizeBytes: Long,
opTime: GpuMetric): PendingSecondAggResults = {
closeOnExcept(result) { _ =>
new PendingSecondAggResults(result.rideAlongColumns, result.aggResult,
boundStages, targetSizeBytes, opTime)
}
}
def makeBatch(columns: Array[cudf.ColumnVector], types: Array[DataType]): ColumnarBatch = {
val tmp = columns.zip(types).map {
case (c, t) => GpuColumnVector.from(c, t).asInstanceOf[ColumnVector]
}
new ColumnarBatch(tmp, columns(0).getRowCount.toInt)
}
def splitCb(cb: ColumnarBatch, inclusiveCutPoint: Int): (ColumnarBatch, ColumnarBatch) = {
// First save the types
val types = GpuColumnVector.extractTypes(cb)
// Slice is at the column level, not at a table level
closeOnExcept(new ArrayBuffer[cudf.ColumnVector]()) { before =>
val afterCb = closeOnExcept(new ArrayBuffer[cudf.ColumnVector]()) { after =>
GpuColumnVector.extractBases(cb).foreach { base =>
val result = base.split(inclusiveCutPoint)
before.append(result(0))
after.append(result(1))
assert(result.length == 2)
}
makeBatch(after.toArray, types)
}
closeOnExcept(afterCb) { _ =>
(makeBatch(before.toArray, types), afterCb)
}
}
}
def sliceInclusiveCb(cb: ColumnarBatch, inclusiveStart: Int, inclusiveEnd: Int): ColumnarBatch = {
// First save the types
val types = GpuColumnVector.extractTypes(cb)
// Slice is at the column level, not at a table level
closeOnExcept(new ArrayBuffer[cudf.ColumnVector]()) { cbs =>
GpuColumnVector.extractBases(cb).foreach { base =>
val result = base.slice(inclusiveStart, inclusiveEnd + 1)
cbs.append(result(0))
assert(result.length == 1)
}
makeBatch(cbs.toArray, types)
}
}
/**
* Makes a boolean vector where only one row is true.
* @param trueRow the row that should be true
* @param size the total number of rows.
*/
def makeSingleRowMask(trueRow: Int, size: Int): cudf.ColumnVector = {
assert(size > trueRow, s"$size > $trueRow")
// TODO probably want an optimization if the size is really small
val rowsBefore = trueRow
val rowsAfter = size - trueRow - 1
if (rowsBefore == 0 && rowsAfter == 0) {
// Special Case where we cannot concat
cudf.ColumnVector.fromBooleans(true)
} else {
withResource(new AutoClosableArrayBuffer[cudf.ColumnView]) { toConcat =>
withResource(cudf.Scalar.fromBool(false)) { fs =>
if (rowsBefore > 0) {
toConcat.append(cudf.ColumnVector.fromScalar(fs, rowsBefore))
}
toConcat.append(cudf.ColumnVector.fromBooleans(true))
if (rowsAfter > 0) {
toConcat.append(cudf.ColumnVector.fromScalar(fs, rowsAfter))
}
}
cudf.ColumnVector.concatenate(toConcat.toArray: _*)
}
}
}
def replaceCountInAggAt(cb: ColumnarBatch, countRow: Int, newCount: Long): ColumnarBatch = {
// TODO I'm sure there is a lot we can do to optimize this, but this works...
withResource(AggResultBatchConventions.getRepeatedAggColumns(cb)) { aggColumns =>
val newCountCv = withResource(AggResultBatchConventions.getCount(cb)) { count =>
withResource(makeSingleRowMask(countRow, count.getRowCount.toInt)) { mask =>
withResource(cudf.Scalar.fromLong(newCount)) { ncScalar =>
mask.ifElse(ncScalar, count.getBase)
}
}
}
withResource(newCountCv) { _ =>
AggResultBatchConventions.appendCountColumn(aggColumns, newCountCv)
}
}
}
def concatBatchesAndClose(toConcat: AutoClosableArrayBuffer[SpillableColumnarBatch],
opTime: GpuMetric): SpillableColumnarBatch = {
val cb = withRetryNoSplit(toConcat) { _ =>
opTime.ns {
val ready = closeOnExcept(new AutoClosableArrayBuffer[ColumnarBatch]) { cbs =>
toConcat.foreach { scb =>
cbs.append(scb.getColumnarBatch())
}
cbs.toArray
}
// This consumes/closes the array of batches
ConcatAndConsumeAll.buildNonEmptyBatchFromTypes(ready,
GpuColumnVector.extractTypes(ready.head))
}
}
SpillableColumnarBatch(cb, SpillPriorities.ACTIVE_ON_DECK_PRIORITY)
}
def splitAggResultByRepeatedRows(aggResult: SpillableColumnarBatch,
targetRows: Int,
totalRows: Long): (SpillableColumnarBatch, SpillableColumnarBatch) = {
// We have high confidence that we need to split this in two, but even then we don't
// have enough information here to know that we don't need to split it without
// processing the batch
withResource(aggResult.getColumnarBatch()) { cb =>
if (cb.numRows() == 1) {
// This is a very common special case where there is one and only one row, so
// we need to keep all of the columns the same, but slice the count row accordingly.
withResource(AggResultBatchConventions.getRepeatedAggColumns(cb)) { aggs =>
// The aggs are just repeated, but the count is new
val firstPart = withResource(cudf.ColumnVector.fromLongs(targetRows)) { count =>
AggResultBatchConventions.appendCountColumn(aggs, count)
}
val secondPart = closeOnExcept(firstPart) { _ =>
withResource(cudf.ColumnVector.fromLongs(totalRows - targetRows)) {
count =>
AggResultBatchConventions.appendCountColumn(aggs, count)
}
}
(SpillableColumnarBatch(firstPart, SpillPriorities.ACTIVE_ON_DECK_PRIORITY),
SpillableColumnarBatch(secondPart, SpillPriorities.ACTIVE_BATCHING_PRIORITY))
}
} else {
// This is a little complicated in the general case. We need to find which row
// in the aggregation we need to split on. The only way to do that is to get a
// running sum of the counts, and then do an upper bound on that column
withResource(AggResultBatchConventions.getCount(cb)) { counts =>
val (splitIndex, countToKeep, countForNextTime) =
withResource(counts.getBase.prefixSum()) { runningCount =>
val splitIndex = withResource(new cudf.Table(runningCount)) { runningCountTable =>
withResource(cudf.ColumnVector.fromLongs(targetRows)) { tr =>
withResource(new cudf.Table(tr)) { targetRowsTable =>
runningCountTable.lowerBound(Array(true), targetRowsTable, Array(false))
}
}
}
withResource(splitIndex) { _ =>
val indexToLookAt = withResource(splitIndex.getScalarElement(0)) { s =>
s.getInt
}
val totalRowsUpToIndex = withResource(
runningCount.getScalarElement(indexToLookAt)) { s =>
s.getLong
}
val countInRow = withResource(counts.getBase.getScalarElement(indexToLookAt)) { s =>
s.getLong
}
val countToKeep = targetRows - (totalRowsUpToIndex - countInRow)
val countForNextTime = countInRow - countToKeep
(indexToLookAt, countToKeep, countForNextTime)
}
}
if (countForNextTime == 0) {
// We got lucky and it is on an agg boundary
val (a, b) = splitCb(cb, splitIndex + 1)
(SpillableColumnarBatch(a, SpillPriorities.ACTIVE_ON_DECK_PRIORITY),
SpillableColumnarBatch(b, SpillPriorities.ACTIVE_BATCHING_PRIORITY))
} else {
val scbFirst = withResource(sliceInclusiveCb(cb, 0, splitIndex)) { first =>
SpillableColumnarBatch(replaceCountInAggAt(first, splitIndex, countToKeep),
SpillPriorities.ACTIVE_ON_DECK_PRIORITY)
}
closeOnExcept(scbFirst) { _ =>
val scbSecond = withResource(sliceInclusiveCb(cb, splitIndex, cb.numRows() - 1)) {
second =>
SpillableColumnarBatch(replaceCountInAggAt(second, 0, countForNextTime),
SpillPriorities.ACTIVE_BATCHING_PRIORITY)
}
(scbFirst, scbSecond)
}
}
}
}
}
}
}
class PendingSecondAggResults private(
private val rideAlongColumns: util.LinkedList[SpillableColumnarBatch],
private var aggResult: SpillableColumnarBatch,
private val boundStages: GpuUnboundedToUnboundedAggStages,
private val targetSizeBytes: Long,
opTime: GpuMetric) extends Iterator[SlicedBySize] with AutoCloseable {
import PendingSecondAggResults._
private var totalRowsInAgg = {
var total = 0L
rideAlongColumns.forEach(total += _.numRows())
total
}
override def hasNext: Boolean = !rideAlongColumns.isEmpty
/**
* We want to estimate the average size per row that the aggregations will add. This
* does not have to be perfect because we will back it up with a split and retry handling
* that can slice the output in half. We are also going to include the count column because
* I don't want to read the data back, if it spilled.
*/
private def estimateAggSizePerRow: Double =
aggResult.sizeInBytes.toDouble / aggResult.numRows()
/**
* Gets the next batch of ride along columns to process.
*/
private def getRideAlongToProcess(): SpillableColumnarBatch = {
val averageAggSizePerRow = estimateAggSizePerRow
var currentSize = 0L
var numRowsTotal = 0
// First pull in the batches that might be enough to process
val toProcess = new AutoClosableArrayBuffer[SpillableColumnarBatch]()
closeOnExcept(toProcess) { _ =>
while (currentSize < targetSizeBytes && !rideAlongColumns.isEmpty) {
val scb = rideAlongColumns.pop()
toProcess.append(scb)
val numRows = scb.numRows()
val estimatedSize = (scb.sizeInBytes + (numRows * averageAggSizePerRow)).toLong
numRowsTotal += numRows
currentSize += estimatedSize
}
if (currentSize > targetSizeBytes) {
// If we buffered too much data we need to decide how to slice it, but we only
// want to slice the last batch in toProcess because we know that the batch before
// it was not large enough to send us over the limit. We do this by estimating how
// many rows we need from toProcess and hence how many rows we need to remove.
val avgSizePerRow = currentSize.toDouble / numRowsTotal
val estimatedRowsToKeep = math.ceil(targetSizeBytes / avgSizePerRow).toLong
val estimatedRowsToRemove = numRowsTotal - estimatedRowsToKeep
// If we need to remove more rows, than the last batch has, we just remove the last batch
val numRowsToRemove = if (estimatedRowsToRemove >= toProcess.last.numRows) {
val theLastOne = toProcess.removeLast()
rideAlongColumns.addFirst(theLastOne)
// We probably don't need to update numRowsTotal, but it is just to be defensive
numRowsTotal -= theLastOne.numRows()
0
} else {
numRowsTotal - estimatedRowsToKeep
}
if (numRowsToRemove > 0) {
// We need to slice the last batch
val theLastOne = toProcess.removeLast()
val numRowsToKeepInLastBatch = (theLastOne.numRows() - numRowsToRemove).toInt
val (keep, forNextTime) = withRetryNoSplit(theLastOne) { _ =>
opTime.ns {
withResource(theLastOne.getColumnarBatch()) { cb =>
splitCb(cb, numRowsToKeepInLastBatch)
}
}
}
rideAlongColumns.addFirst(SpillableColumnarBatch(forNextTime,
SpillPriorities.ACTIVE_ON_DECK_PRIORITY))
toProcess.append(SpillableColumnarBatch(keep,
SpillPriorities.ACTIVE_ON_DECK_PRIORITY))
}
}
}
concatBatchesAndClose(toProcess, opTime)
}
def getSlicedAggResultByRepeatedRows(numDesiredRows: Int): SpillableColumnarBatch = {
val (ret, keep) = withRetryNoSplit(aggResult) { _ =>
splitAggResultByRepeatedRows(aggResult, numDesiredRows, totalRowsInAgg)
}
totalRowsInAgg -= numDesiredRows
aggResult = keep
ret
}
override def next(): SlicedBySize = {
if (!hasNext) {
throw new NoSuchElementException()
}
closeOnExcept(getRideAlongToProcess()) { rideAlongScb =>
if (rideAlongColumns.isEmpty) {
// This is the last batch so we don't need to even figure out where to slice
// the AggResult
SlicedBySize(rideAlongScb, aggResult.incRefCount())
} else {
SlicedBySize(rideAlongScb, getSlicedAggResultByRepeatedRows(rideAlongScb.numRows()))
}
}
}
override def close(): Unit = {
rideAlongColumns.forEach(_.close())
rideAlongColumns.clear()
aggResult.close()
}
}
/**
* Try to slice the input batches into right sized output.
*/
class GpuUnboundedToUnboundedAggSliceBySizeIterator(
input: Iterator[SecondPassAggResult],
boundStages: GpuUnboundedToUnboundedAggStages,
targetSizeBytes: Long,
opTime: GpuMetric) extends Iterator[SlicedBySize] {
private var pending: Option[PendingSecondAggResults] = None
private def pendingHasNext: Boolean = pending.exists(_.hasNext)
override def hasNext: Boolean = pendingHasNext || input.hasNext
override def next(): SlicedBySize = {
if (!hasNext) {
throw new NoSuchElementException()
}
if (!pendingHasNext) {
pending = Some(PendingSecondAggResults(input.next(), boundStages, targetSizeBytes, opTime))
}
val ret = pending.get.next()
// avoid leaks in the tests
if (!pendingHasNext) {
pending.get.close()
pending = None
}
ret
}
Option(TaskContext.get()).foreach { tc =>
onTaskCompletion(tc) {
close()
}
}
def close(): Unit = {
pending.foreach(_.close())
pending = None
}
}
// The final step is to expand the data to match that size, combine everything together and
// return the result.
class GpuUnboundedToUnboundedAggFinalIterator(
input: Iterator[SlicedBySize],
boundStages: GpuUnboundedToUnboundedAggStages,
numOutputBatches: GpuMetric,
numOutputRows: GpuMetric,
opTime: GpuMetric) extends Iterator[ColumnarBatch] {
override def hasNext: Boolean = input.hasNext
override def next(): ColumnarBatch = {
if (!hasNext) {
throw new NoSuchElementException()
}
// TODO we need to add in the split to the retry
withRetryNoSplit(input.next()) { toExpand =>
opTime.ns {
// The first stage is to expand the aggregate based on the count column
val repeatedAggs = withResource(toExpand.aggResults.getColumnarBatch()) { cb =>
withResource(AggResultBatchConventions.getCount(cb)) { counts =>
withResource(AggResultBatchConventions.getRepeatedAggColumns(cb)) { toRepeat =>
val dataTypes = GpuColumnVector.extractTypes(toRepeat)
withResource(GpuColumnVector.from(toRepeat)) { table =>
withResource(table.repeat(counts.getBase)) { repeated =>
GpuColumnVector.from(repeated, dataTypes)
}
}
}
}
}
// Second step is to stitch the two together
val combined = withResource(repeatedAggs) { _ =>
withResource(toExpand.rideAlongColumns.getColumnarBatch()) { rideAlong =>
GpuColumnVector.appendColumns(rideAlong,
GpuColumnVector.extractColumns(repeatedAggs): _*)
}
}
withResource(combined) { _ =>
closeOnExcept(GpuProjectExec.project(combined, boundStages.boundFinalProject)) { ret =>
numOutputBatches += 1
numOutputRows += ret.numRows()
ret
}
}
}
}
}
}
/**
* Holds the bound references for various aggregation stages
* @param boundRideAlong used for a project that pulls out columns that are passing through
* unchanged.
* @param boundAggregations aggregations to be done. NOTE THIS IS WIP
* @param boundFinalProject the final project to get the output in the right order
*/
case class GpuUnboundedToUnboundedAggStages(
inputTypes: Seq[DataType],
boundPartitionSpec: Seq[GpuExpression],
boundRideAlong: Seq[GpuExpression],
boundAggregations: Seq[GpuExpression],
boundFinalProject: Seq[GpuExpression]) extends Serializable {
val groupingColumnTypes: Seq[DataType] = boundPartitionSpec.map{_.dataType}
val groupColumnOrdinals: Seq[Int] = boundPartitionSpec.map {
case GpuBoundReference(ordinal, _, _) => ordinal
}
val aggregateFunctions: Seq[GpuAggregateFunction] = boundAggregations.map {
_.asInstanceOf[GpuAlias].child.asInstanceOf[GpuAggregateFunction]
}
val aggResultTypes: Seq[DataType] = aggregateFunctions.map{ _.dataType }
val aggInputProjections: Seq[Expression] = aggregateFunctions.flatMap{ _.inputProjection }
val aggInputOrdinals: Seq[Int] = aggInputProjections.map {
case GpuBoundReference(ordinal, _, _) => ordinal
// TODO (future):
// Assuming GpuLiteral is always for GpuCount. Might be better to generate
// a literals column, per operator that takes a literal.
case GpuLiteral(_, _) => inputTypes.size // An all 1s column appended at the end.
case _ => throw new IllegalStateException("Unexpected expression")
}
val cudfUpdateAggregates: Seq[CudfAggregate] = aggregateFunctions.flatMap {
_.updateAggregates
}
val cudfMergeAggregates: Seq[CudfAggregate] = aggregateFunctions.flatMap {
_.mergeAggregates
}
val rideAlongColumnTypes: Seq[DataType] = boundRideAlong.map { _.dataType }
}
object AggResultBatchConventions {
private def getColumnFromBatch(cb: ColumnarBatch, colId: Int): ColumnVector = {
val ret = cb.column(colId)
ret.asInstanceOf[GpuColumnVector].incRefCount()
ret
}
def getCount(cb: ColumnarBatch): GpuColumnVector = {
// By convention the last column is the count column
getColumnFromBatch(cb, cb.numCols() - 1).asInstanceOf[GpuColumnVector]
}
def getRepeatedAggColumns(cb: ColumnarBatch): ColumnarBatch = {
// By convention all of the columns, except the last one are agg columns
val columns = (0 until cb.numCols() - 1).safeMap { index =>
getColumnFromBatch(cb, index)
}
new ColumnarBatch(columns.toArray, cb.numRows())
}
def appendCountColumn(repeatedAggColumns: ColumnarBatch,
counts: cudf.ColumnVector): ColumnarBatch = {
val countCol = GpuColumnVector.fromChecked(counts, LongType)
GpuColumnVector.appendColumns(repeatedAggColumns, countCol)
}
}
/**
* An iterator that can do unbounded to unbounded window aggregations as group by aggregations
* followed by an expand/join.
*/
object GpuUnboundedToUnboundedAggWindowIterator {
def rideAlongProjection(windowOps: Seq[NamedExpression],
childOutput: Seq[Attribute]): (Seq[Attribute], Seq[GpuExpression]) = {
val rideAlong = windowOps.filter {
case GpuAlias(_: AttributeReference, _) | _: AttributeReference => true
case _ => false
}
val rideAlongOutput = rideAlong.map(_.toAttribute)
val boundRideAlong = GpuBindReferences.bindGpuReferences(rideAlong, childOutput)
(rideAlongOutput, boundRideAlong)
}
def tmpAggregationOps(windowOps: Seq[NamedExpression],
childOutput: Seq[Attribute]): (Seq[Attribute], Seq[GpuExpression]) = {
// TODO I don't know what this is really going to look like. I am just doing an approximation
// here so I can get the output of the aggregations after everything is done for the
// repeat. Please fill this in/split it apart, whatever to make it work for you
val windowAggs = windowOps.flatMap {
case GpuAlias(_: AttributeReference, _) | _: AttributeReference => None
case ga@GpuAlias(GpuWindowExpression(agg: GpuUnboundedToUnboundedWindowAgg, _), _) =>
// We don't care about the spec, they are all unbounded to unbounded so just get the func
// We do care that we keep the expression id so we can line it up at the very end
Some(GpuAlias(agg, ga.name)(ga.exprId))
case ga@GpuAlias(GpuWindowExpression(GpuAggregateExpression(
agg: GpuUnboundedToUnboundedWindowAgg, _, _, _, _), _), _) =>
// TODO should I verify distinct, filter, etc
// We don't care about the spec, they are all unbounded to unbounded so just get the func
// We do care that we keep the expression id so we can line it up at the very end
Some(GpuAlias(agg, ga.name)(ga.exprId))
case other =>
// This should only happen if we did something wrong with how this was created.
throw new IllegalArgumentException(
s"Found unexpected expression $other in window exec ${other.getClass}")
} :+ GpuAlias(GpuCount(Seq(GpuLiteral(1L))), "_count")()
// Later code by conventions "knows" that the last column is a count and that it can be
// thrown away. We should never try and dedupe this count with an existing count column,
// because if we need to slice the aggregation results we will modify the count column
// to do that. This will not work if we are going to output that count column.
val aggregationsOutput = windowAggs.map(_.toAttribute)
val boundAggregations = GpuBindReferences.bindGpuReferences(windowAggs, childOutput)
(aggregationsOutput, boundAggregations)
}
def repeatOps(aggregationsOutput: Seq[Attribute]): Seq[Attribute] = {
// By convention the last column in the aggs is the count column we want to use
aggregationsOutput.slice(0, aggregationsOutput.length - 1)
}
def computeFinalProject(rideAlongOutput: Seq[Attribute],
aggsToRepeatOutput: Seq[Attribute],
windowOps: Seq[NamedExpression]): Seq[GpuExpression] = {
val combinedOutput = rideAlongOutput ++ aggsToRepeatOutput
val remapped = windowOps.map { expr =>
GpuAlias(AttributeReference(expr.name, expr.dataType, expr.nullable)(expr.exprId),
expr.name)(expr.exprId)
}
GpuBindReferences.bindGpuReferences(remapped, combinedOutput)
}
/**
* Break up the window operations into the various needed stages and bind them.
* @param gpuPartitionSpec the partition spec for the GPU
* @param windowOps the window operations (along with the pass-through columns)
* @param childOutput what the output of the operation feeding this looks like
* @return
*/
def breakUpAggregations(gpuPartitionSpec: Seq[Expression],
windowOps: Seq[NamedExpression],
childOutput: Seq[Attribute]): GpuUnboundedToUnboundedAggStages = {
val childTypes = childOutput.map{_.dataType}
// STEP 0. Bind the partition spec to be used for the window.
val boundPartitionSpec = GpuBindReferences.bindGpuReferences(gpuPartitionSpec, childOutput)
// STEP 1. project that will pull out the columns that are output unchanged.
val (rideAlongOutput, boundRideAlong) = rideAlongProjection(windowOps, childOutput)
// STEP 2. project that will pull out the columns needed for the aggregation.
val (aggregationsOutput, boundAggregations) = tmpAggregationOps(windowOps, childOutput)
// STEP N: Given the output of the aggregations get the aggregations without that count.
// The count and aggs locations is by convention.
val aggsToRepeatOutput = repeatOps(aggregationsOutput)
// STEP N + 1: After the repeat is done the repeated columns are put at the end of the
// rideAlong columns and then we need to do a project that would put them all in the
// proper output order, according to the windowOps
val finalProject = computeFinalProject(rideAlongOutput, aggsToRepeatOutput, windowOps)
GpuUnboundedToUnboundedAggStages(childTypes, boundPartitionSpec, boundRideAlong,
boundAggregations, finalProject)
}
def apply(input: Iterator[ColumnarBatch],
boundStages: GpuUnboundedToUnboundedAggStages,
numOutputBatches: GpuMetric,
numOutputRows: GpuMetric,
opTime: GpuMetric,
targetSizeBytes: Long): Iterator[ColumnarBatch] = {
val firstPass = new GpuUnboundedToUnboundedAggWindowFirstPassIterator(input, boundStages,
opTime)
val secondPass = new GpuUnboundedToUnboundedAggWindowSecondPassIterator(firstPass,
boundStages, opTime)
val slicedBySize = new GpuUnboundedToUnboundedAggSliceBySizeIterator(secondPass,
boundStages, targetSizeBytes, opTime)
new GpuUnboundedToUnboundedAggFinalIterator(slicedBySize, boundStages,
numOutputBatches, numOutputRows, opTime)
}
}
/**
* This allows for batches of data to be processed without needing them to correspond to
* the partition by boundaries. This is specifically for unbounded to unbounded window
* operations that can be replaced with an aggregation and then expanded out/joined with
* the original input data.
*/
case class GpuUnboundedToUnboundedAggWindowExec(
windowOps: Seq[NamedExpression],
gpuPartitionSpec: Seq[Expression],
gpuOrderSpec: Seq[SortOrder],
child: SparkPlan)(
override val cpuPartitionSpec: Seq[Expression],
override val cpuOrderSpec: Seq[SortOrder],
targetSizeBytes: Long) extends GpuWindowBaseExec {
override def otherCopyArgs: Seq[AnyRef] =
cpuPartitionSpec :: cpuOrderSpec :: targetSizeBytes.asInstanceOf[java.lang.Long] :: Nil
// For this we only need the data to be sorted by the partition columns, but
// we don't change the input sort from the CPU yet. In some cases we might even
// be able to remove the sort entirely. https://github.com/NVIDIA/spark-rapids/issues/9989
override def requiredChildOrdering: Seq[Seq[SortOrder]] =
Seq(cpuPartitionOrdering)
override protected def internalDoExecuteColumnar(): RDD[ColumnarBatch] = {
val numOutputBatches = gpuLongMetric(GpuMetric.NUM_OUTPUT_BATCHES)
val numOutputRows = gpuLongMetric(GpuMetric.NUM_OUTPUT_ROWS)
val opTime = gpuLongMetric(GpuMetric.OP_TIME)
val boundStages = GpuUnboundedToUnboundedAggWindowIterator.breakUpAggregations(
gpuPartitionSpec, windowOps, child.output)
child.executeColumnar().mapPartitions { iter =>
GpuUnboundedToUnboundedAggWindowIterator(iter, boundStages,
numOutputBatches, numOutputRows, opTime, targetSizeBytes)
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy