com.nvidia.spark.rapids.window.GpuWindowExec.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2020-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.nvidia.spark.rapids.window
import ai.rapids.cudf.NvtxColor
import com.nvidia.spark.rapids._
import com.nvidia.spark.rapids.Arm.withResource
import com.nvidia.spark.rapids.RmmRapidsRetryIterator.withRetryNoSplit
import com.nvidia.spark.rapids.shims.ShimUnaryExecNode
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{Ascending, Attribute, AttributeSeq, CurrentRow, Expression, NamedExpression, RangeFrame, RowFrame, SortOrder, UnboundedPreceding}
import org.apache.spark.sql.catalyst.plans.physical.{AllTuples, ClusteredDistribution, Distribution, Partitioning}
import org.apache.spark.sql.execution.SparkPlan
import org.apache.spark.sql.types._
import org.apache.spark.sql.vectorized.ColumnarBatch
object GpuWindowExec {
def isRunningWindow(spec: GpuWindowSpecDefinition): Boolean = spec match {
case GpuWindowSpecDefinition(_, _, GpuSpecifiedWindowFrame(
RowFrame,
GpuSpecialFrameBoundary(UnboundedPreceding),
GpuSpecialFrameBoundary(CurrentRow))) => true
case GpuWindowSpecDefinition(_, _,
GpuSpecifiedWindowFrame(RowFrame,
GpuSpecialFrameBoundary(UnboundedPreceding), GpuLiteral(value, _)))
if value == 0 => true
case GpuWindowSpecDefinition(_, _, GpuSpecifiedWindowFrame(
RangeFrame,
GpuSpecialFrameBoundary(UnboundedPreceding),
GpuSpecialFrameBoundary(CurrentRow))) => true
case GpuWindowSpecDefinition(_, _,
GpuSpecifiedWindowFrame(RangeFrame,
GpuSpecialFrameBoundary(UnboundedPreceding), GpuLiteral(value, _)))
if value == 0 => true
case _ => false
}
}
trait GpuWindowBaseExec extends ShimUnaryExecNode with GpuExec {
val windowOps: Seq[NamedExpression]
val gpuPartitionSpec: Seq[Expression]
val gpuOrderSpec: Seq[SortOrder]
val cpuPartitionSpec: Seq[Expression]
val cpuOrderSpec: Seq[SortOrder]
import GpuMetric._
override lazy val additionalMetrics: Map[String, GpuMetric] = Map(
OP_TIME -> createNanoTimingMetric(MODERATE_LEVEL, DESCRIPTION_OP_TIME))
override def output: Seq[Attribute] = windowOps.map(_.toAttribute)
override def requiredChildDistribution: Seq[Distribution] = {
if (cpuPartitionSpec.isEmpty) {
// Only show warning when the number of bytes is larger than 100 MiB?
logWarning("No Partition Defined for Window operation! Moving all data to a single "
+ "partition, this can cause serious performance degradation.")
AllTuples :: Nil
} else ClusteredDistribution(cpuPartitionSpec) :: Nil
}
lazy val gpuPartitionOrdering: Seq[SortOrder] = {
gpuPartitionSpec.map(SortOrder(_, Ascending))
}
lazy val cpuPartitionOrdering: Seq[SortOrder] = {
cpuPartitionSpec.map(SortOrder(_, Ascending))
}
override def requiredChildOrdering: Seq[Seq[SortOrder]] =
Seq(cpuPartitionOrdering ++ cpuOrderSpec)
override def outputOrdering: Seq[SortOrder] = child.outputOrdering
override def outputPartitioning: Partitioning = child.outputPartitioning
override protected def doExecute(): RDD[InternalRow] =
throw new IllegalStateException(s"Row-based execution should not happen, in $this.")
}
/**
* An Iterator that performs window operations on the input data. It is required that the input
* data is batched so all of the data for a given key is in the same batch. The input data must
* also be sorted by both partition by keys and order by keys.
*/
class GpuWindowIterator(
input: Iterator[ColumnarBatch],
override val boundWindowOps: Seq[GpuExpression],
override val boundPartitionSpec: Seq[GpuExpression],
override val boundOrderSpec: Seq[SortOrder],
val outputTypes: Array[DataType],
numOutputBatches: GpuMetric,
numOutputRows: GpuMetric,
opTime: GpuMetric) extends Iterator[ColumnarBatch] with BasicWindowCalc {
override def isRunningBatched: Boolean = false
override def hasNext: Boolean = onDeck.isDefined || input.hasNext
var onDeck: Option[SpillableColumnarBatch] = None
override def next(): ColumnarBatch = {
val cbSpillable = onDeck match {
case Some(x) =>
onDeck = None
x
case _ =>
getNext()
}
withRetryNoSplit(cbSpillable) { _ =>
withResource(cbSpillable.getColumnarBatch()) { cb =>
withResource(new NvtxWithMetrics("window", NvtxColor.CYAN, opTime)) { _ =>
val ret = withResource(computeBasicWindow(cb)) { cols =>
convertToBatch(outputTypes, cols)
}
numOutputBatches += 1
numOutputRows += ret.numRows()
ret
}
}
}
}
def getNext(): SpillableColumnarBatch = {
SpillableColumnarBatch(input.next(), SpillPriorities.ACTIVE_BATCHING_PRIORITY)
}
}
case class GpuWindowExec(
windowOps: Seq[NamedExpression],
gpuPartitionSpec: Seq[Expression],
gpuOrderSpec: Seq[SortOrder],
child: SparkPlan)(
override val cpuPartitionSpec: Seq[Expression],
override val cpuOrderSpec: Seq[SortOrder]) extends GpuWindowBaseExec {
override def otherCopyArgs: Seq[AnyRef] = cpuPartitionSpec :: cpuOrderSpec :: Nil
override def childrenCoalesceGoal: Seq[CoalesceGoal] = Seq(outputBatching)
override def outputBatching: CoalesceGoal = if (gpuPartitionSpec.isEmpty) {
RequireSingleBatch
} else {
BatchedByKey(gpuPartitionOrdering)(cpuPartitionOrdering)
}
override protected def internalDoExecuteColumnar(): RDD[ColumnarBatch] = {
val numOutputBatches = gpuLongMetric(GpuMetric.NUM_OUTPUT_BATCHES)
val numOutputRows = gpuLongMetric(GpuMetric.NUM_OUTPUT_ROWS)
val opTime = gpuLongMetric(GpuMetric.OP_TIME)
val boundWindowOps = GpuBindReferences.bindGpuReferences(windowOps, child.output)
val boundPartitionSpec = GpuBindReferences.bindGpuReferences(gpuPartitionSpec, child.output)
val boundOrderSpec = GpuBindReferences.bindReferences(gpuOrderSpec, child.output)
child.executeColumnar().mapPartitions { iter =>
new GpuWindowIterator(iter, boundWindowOps, boundPartitionSpec, boundOrderSpec,
output.map(_.dataType).toArray, numOutputBatches, numOutputRows, opTime)
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy