org.apache.spark.sql.rapids.GpuJsonToStructs.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2023-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.rapids
import ai.rapids.cudf
import ai.rapids.cudf.{BaseDeviceMemoryBuffer, ColumnVector, ColumnView, Cuda, DataSource, DeviceMemoryBuffer, HostMemoryBuffer, Scalar}
import com.nvidia.spark.rapids.{GpuColumnVector, GpuScalar, GpuUnaryExpression, HostAlloc}
import com.nvidia.spark.rapids.Arm.{closeOnExcept, withResource}
import com.nvidia.spark.rapids.jni.JSONUtils
import org.apache.commons.text.StringEscapeUtils
import org.apache.spark.sql.catalyst.expressions.{ExpectsInputTypes, Expression, NullIntolerant, TimeZoneAwareExpression}
import org.apache.spark.sql.catalyst.json.JSONOptions
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types._
/**
* Exception thrown when cudf cannot parse the JSON data because some Json to Struct cases are not
* currently supported.
*/
class JsonParsingException(s: String, cause: Throwable) extends RuntimeException(s, cause) {}
class JsonDeviceDataSource(combined: ColumnVector) extends DataSource {
lazy val data: BaseDeviceMemoryBuffer = combined.getData
lazy val totalSize: Long = data.getLength
override def size(): Long = totalSize
override def hostRead(offset: Long, length: Long): HostMemoryBuffer = {
val realLength = math.min(totalSize - offset, length)
withResource(data.slice(offset, realLength)) { sliced =>
closeOnExcept(HostAlloc.alloc(realLength)) { hostMemoryBuffer =>
hostMemoryBuffer.copyFromDeviceBuffer(sliced.asInstanceOf[DeviceMemoryBuffer])
hostMemoryBuffer
}
}
}
override def hostRead(offset: Long, hostMemoryBuffer: HostMemoryBuffer): Long = {
val length = math.min(totalSize - offset, hostMemoryBuffer.getLength)
withResource(data.slice(offset, length)) { sliced =>
hostMemoryBuffer.copyFromDeviceBuffer(sliced.asInstanceOf[DeviceMemoryBuffer])
}
length
}
override def supportsDeviceRead = true
override def deviceRead(offset: Long, dest: DeviceMemoryBuffer, stream: Cuda.Stream): Long = {
val length = math.min(totalSize - offset, dest.getLength)
dest.copyFromDeviceBufferAsync(0, data, offset, length, stream)
length
}
override def close(): Unit = {
combined.close()
super.close()
}
}
case class GpuJsonToStructs(
schema: DataType,
options: Map[String, String],
child: Expression,
timeZoneId: Option[String] = None)
extends GpuUnaryExpression with TimeZoneAwareExpression with ExpectsInputTypes
with NullIntolerant {
import GpuJsonReadCommon._
private lazy val emptyRowStr = constructEmptyRow(schema)
private def constructEmptyRow(schema: DataType): String = {
schema match {
case struct: StructType if struct.fields.nonEmpty =>
s"""{"${StringEscapeUtils.escapeJson(struct.head.name)}":null}"""
case other =>
throw new IllegalArgumentException(s"$other is not supported as a top level type") }
}
private def cleanAndConcat(input: cudf.ColumnVector): (cudf.ColumnVector, cudf.ColumnVector) = {
val stripped = if (input.getData == null) {
input.incRefCount
} else {
withResource(cudf.Scalar.fromString(" ")) { space =>
input.strip(space)
}
}
withResource(stripped) { stripped =>
val isEmpty = withResource(stripped.getByteCount) { lengths =>
withResource(cudf.Scalar.fromInt(0)) { zero =>
lengths.lessOrEqualTo(zero)
}
}
val isNullOrEmptyInput = withResource(isEmpty) { _ =>
withResource(input.isNull) { isNull =>
isNull.binaryOp(cudf.BinaryOp.NULL_LOGICAL_OR, isEmpty, cudf.DType.BOOL8)
}
}
closeOnExcept(isNullOrEmptyInput) { _ =>
withResource(cudf.Scalar.fromString(emptyRowStr)) { emptyRow =>
// TODO is it worth checking if any are empty or null and then skipping this?
withResource(isNullOrEmptyInput.ifElse(emptyRow, stripped)) { nullsReplaced =>
val isLiteralNull = withResource(Scalar.fromString("null")) { literalNull =>
nullsReplaced.equalTo(literalNull)
}
withResource(isLiteralNull) { _ =>
withResource(isLiteralNull.ifElse(emptyRow, nullsReplaced)) { cleaned =>
checkForNewline(cleaned, "\n", "line separator")
checkForNewline(cleaned, "\r", "carriage return")
// add a newline to each JSON line
val withNewline = withResource(cudf.Scalar.fromString("\n")) { lineSep =>
withResource(ColumnVector.fromScalar(lineSep, cleaned.getRowCount.toInt)) {
newLineCol =>
ColumnVector.stringConcatenate(Array[ColumnView](cleaned, newLineCol))
}
}
// We technically don't need to join the strings together as we just want the buffer
// which should be the same either way.
(isNullOrEmptyInput, withNewline)
}
}
}
}
}
}
}
private def checkForNewline(cleaned: ColumnVector, newlineStr: String, name: String): Unit = {
withResource(cudf.Scalar.fromString(newlineStr)) { newline =>
withResource(cleaned.stringContains(newline)) { hasNewline =>
withResource(hasNewline.any()) { anyNewline =>
if (anyNewline.isValid && anyNewline.getBoolean) {
throw new IllegalArgumentException(
s"We cannot currently support parsing JSON that contains a $name in it")
}
}
}
}
}
private lazy val parsedOptions = new JSONOptions(
options,
timeZoneId.get,
SQLConf.get.columnNameOfCorruptRecord)
private lazy val jsonOptions =
GpuJsonReadCommon.cudfJsonOptions(parsedOptions)
override protected def doColumnar(input: GpuColumnVector): cudf.ColumnVector = {
schema match {
case _: MapType =>
JSONUtils.extractRawMapFromJsonString(input.getBase)
case struct: StructType => {
// if we ever need to support duplicate keys we need to keep track of the duplicates
// and make the first one null, but I don't think this will ever happen in practice
val cudfSchema = makeSchema(struct)
// We cannot handle all corner cases with this right now. The parser just isn't
// good enough, but we will try to handle a few common ones.
val numRows = input.getRowCount.toInt
// Step 1: verify and preprocess the data to clean it up and normalize a few things
// Step 2: Concat the data into a single buffer
val (isNullOrEmpty, combined) = cleanAndConcat(input.getBase)
withResource(isNullOrEmpty) { isNullOrEmpty =>
// Step 3: setup a datasource
val table = withResource(new JsonDeviceDataSource(combined)) { ds =>
// Step 4: Have cudf parse the JSON data
try {
cudf.Table.readJSON(cudfSchema, jsonOptions, ds, numRows)
} catch {
case e : RuntimeException =>
throw new JsonParsingException("Currently some Json to Struct cases " +
"are not supported. Consider to set spark.rapids.sql.expression.JsonToStructs" +
"=false", e)
}
}
// process duplicated field names in input struct schema
withResource(table) { _ =>
// Step 5: verify that the data looks correct
if (table.getRowCount != numRows) {
throw new IllegalStateException("The input data didn't parse correctly and we read " +
s"a different number of rows than was expected. Expected $numRows, " +
s"but got ${table.getRowCount}")
}
// Step 7: turn the data into a Struct
withResource(convertTableToDesiredType(table, struct, parsedOptions)) { columns =>
withResource(cudf.ColumnVector.makeStruct(columns: _*)) { structData =>
// Step 8: put nulls back in for nulls and empty strings
withResource(GpuScalar.from(null, struct)) { nullVal =>
isNullOrEmpty.ifElse(nullVal, structData)
}
}
}
}
}
}
case _ => throw new IllegalArgumentException(
s"GpuJsonToStructs currently does not support schema of type $schema.")
}
}
override def withTimeZone(timeZoneId: String): TimeZoneAwareExpression =
copy(timeZoneId = Option(timeZoneId))
override def inputTypes: Seq[AbstractDataType] = StringType :: Nil
override def dataType: DataType = schema.asNullable
override def nullable: Boolean = true
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy