org.apache.spark.sql.rapids.HashFunctions.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2020-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.rapids
import ai.rapids.cudf.{BinaryOp, ColumnVector, ColumnView}
import com.nvidia.spark.rapids.{GpuColumnVector, GpuExpression, GpuProjectExec, GpuUnaryExpression}
import com.nvidia.spark.rapids.Arm.withResource
import com.nvidia.spark.rapids.RapidsPluginImplicits._
import com.nvidia.spark.rapids.jni.Hash
import com.nvidia.spark.rapids.shims.{HashUtils, ShimExpression}
import org.apache.spark.sql.catalyst.analysis.TypeCheckResult
import org.apache.spark.sql.catalyst.expressions.{Expression, ImplicitCastInputTypes, NullIntolerant}
import org.apache.spark.sql.internal.SQLConf
import org.apache.spark.sql.types._
import org.apache.spark.sql.vectorized.ColumnarBatch
case class GpuMd5(child: Expression)
extends GpuUnaryExpression with ImplicitCastInputTypes with NullIntolerant {
override def toString: String = s"md5($child)"
override def inputTypes: Seq[AbstractDataType] = Seq(BinaryType)
override def dataType: DataType = StringType
override def doColumnar(input: GpuColumnVector): ColumnVector = {
withResource(HashUtils.normalizeInput(input.getBase)) { normalized =>
withResource(ColumnVector.md5Hash(normalized)) { fullResult =>
fullResult.mergeAndSetValidity(BinaryOp.BITWISE_AND, normalized)
}
}
}
}
abstract class GpuHashExpression extends GpuExpression with ShimExpression {
override def foldable: Boolean = children.forall(_.foldable)
override def nullable: Boolean = false
private def hasMapType(dt: DataType): Boolean = {
dt.existsRecursively(_.isInstanceOf[MapType])
}
override def checkInputDataTypes(): TypeCheckResult = {
if (children.length < 1) {
TypeCheckResult.TypeCheckFailure(
s"input to function $prettyName requires at least one argument")
} else if (children.exists(child => hasMapType(child.dataType)) &&
!SQLConf.get.getConf(SQLConf.LEGACY_ALLOW_HASH_ON_MAPTYPE)) {
TypeCheckResult.TypeCheckFailure(
s"input to function $prettyName cannot contain elements of MapType. In Spark, same maps " +
"may have different hashcode, thus hash expressions are prohibited on MapType elements." +
s" To restore previous behavior set ${SQLConf.LEGACY_ALLOW_HASH_ON_MAPTYPE.key} " +
"to true.")
} else {
TypeCheckResult.TypeCheckSuccess
}
}
}
object GpuMurmur3Hash {
def compute(batch: ColumnarBatch,
boundExpr: Seq[Expression],
seed: Int = 42): ColumnVector = {
withResource(GpuProjectExec.project(batch, boundExpr)) { args =>
val bases = GpuColumnVector.extractBases(args)
val normalized = bases.safeMap { cv =>
HashUtils.normalizeInput(cv).asInstanceOf[ColumnView]
}
withResource(normalized) { _ =>
Hash.murmurHash32(seed, normalized)
}
}
}
}
case class GpuMurmur3Hash(children: Seq[Expression], seed: Int) extends GpuHashExpression {
override def dataType: DataType = IntegerType
override def prettyName: String = "hash"
override def columnarEval(batch: ColumnarBatch): GpuColumnVector =
GpuColumnVector.from(GpuMurmur3Hash.compute(batch, children, seed), dataType)
}
case class GpuXxHash64(children: Seq[Expression], seed: Long) extends GpuHashExpression {
override def dataType: DataType = LongType
override def prettyName: String = "xxhash64"
override def columnarEval(batch: ColumnarBatch): GpuColumnVector = {
withResource(children.safeMap(_.columnarEval(batch))) { childCols =>
val cudfCols = childCols.map(_.getBase.asInstanceOf[ColumnView]).toArray
GpuColumnVector.from(Hash.xxhash64(seed, cudfCols), dataType)
}
}
}
case class GpuHiveHash(children: Seq[Expression]) extends GpuHashExpression {
override def dataType: DataType = IntegerType
override def prettyName: String = "hive-hash"
override def columnarEval(batch: ColumnarBatch): GpuColumnVector = {
withResource(GpuProjectExec.project(batch, children)) { args =>
val bases = GpuColumnVector.extractBases(args)
val normalized = bases.safeMap { cv =>
HashUtils.normalizeInput(cv).asInstanceOf[ColumnView]
}
GpuColumnVector.from(withResource(normalized)(Hash.hiveHash), dataType)
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy