org.apache.spark.sql.rapids.aggregate.GpuPercentile.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.rapids.aggregate
import java.io.{ByteArrayInputStream, ByteArrayOutputStream, DataInputStream, DataOutputStream}
import scala.collection.mutable.ArrayBuffer
import ai.rapids.cudf
import ai.rapids.cudf.{DType, GroupByAggregation, ReductionAggregation}
import com.nvidia.spark.rapids._
import com.nvidia.spark.rapids.Arm.{withResource, withResourceIfAllowed}
import com.nvidia.spark.rapids.RapidsPluginImplicits.ReallyAGpuExpression
import com.nvidia.spark.rapids.jni.Histogram
import com.nvidia.spark.rapids.shims.ShimExpression
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{AttributeReference, Expression, UnsafeArrayData, UnsafeProjection, UnsafeRow}
import org.apache.spark.sql.catalyst.util.{ArrayData, GenericArrayData}
import org.apache.spark.sql.types._
import org.apache.spark.sql.vectorized.ColumnarBatch
case class CudfHistogram(override val dataType: DataType) extends CudfAggregate {
override lazy val reductionAggregate: cudf.ColumnVector => cudf.Scalar =
(input: cudf.ColumnVector) => input.reduce(ReductionAggregation.histogram(), DType.LIST)
override lazy val groupByAggregate: GroupByAggregation = GroupByAggregation.histogram()
override val name: String = "CudfHistogram"
}
case class CudfMergeHistogram(override val dataType: DataType)
extends CudfAggregate {
override lazy val reductionAggregate: cudf.ColumnVector => cudf.Scalar =
(input: cudf.ColumnVector) =>
input.getType match {
// This is called from updateAggregate in GpuPercentileWithFrequency.
case DType.STRUCT => input.reduce(ReductionAggregation.mergeHistogram(), DType.LIST)
// This is always called from mergeAggregate.
case DType.LIST => withResource(input.getChildColumnView(0)) { histogram =>
histogram.reduce(ReductionAggregation.mergeHistogram(), DType.LIST)
}
case _ => throw new IllegalStateException("Invalid input in CudfMergeHistogram.")
}
override lazy val groupByAggregate: GroupByAggregation = GroupByAggregation.mergeHistogram()
override val name: String = "CudfMergeHistogram"
}
/**
* Perform the final evaluation step to compute percentiles from histograms.
*/
case class GpuPercentileEvaluation(childExpr: Expression, percentage: Either[Double, Array[Double]],
outputType: DataType, isReduction: Boolean)
extends GpuExpression with ShimExpression {
override def dataType: DataType = outputType
override def prettyName: String = "percentile_evaluation"
override def nullable: Boolean = true
override def children: Seq[Expression] = Seq(childExpr)
private lazy val percentageArray = percentage match {
case Left(p) => Array(p)
case Right(p) => p
}
private lazy val outputAsList = outputType match {
case _: ArrayType => true
case _ => false
}
override def columnarEval(batch: ColumnarBatch): GpuColumnVector = {
withResourceIfAllowed(childExpr.columnarEval(batch)) { histograms =>
val percentiles = Histogram.percentileFromHistogram(histograms.getBase,
percentageArray, outputAsList)
GpuColumnVector.from(percentiles, outputType)
}
}
}
abstract class GpuPercentile(childExpr: Expression, percentageLit: GpuLiteral,
isReduction: Boolean)
extends GpuAggregateFunction with Serializable {
protected lazy val histogramBufferType: DataType =
ArrayType(StructType(Seq(StructField("value", childExpr.dataType),
StructField("frequency", LongType))),
containsNull = false)
protected lazy val histogramBuffer: AttributeReference =
AttributeReference("histogramBuff", histogramBufferType)()
override def aggBufferAttributes: Seq[AttributeReference] = histogramBuffer :: Nil
override lazy val initialValues: Seq[Expression] =
Seq(GpuLiteral.create(new GenericArrayData(Array.empty[Any]), histogramBufferType))
override lazy val mergeAggregates: Seq[CudfAggregate] =
Seq(CudfMergeHistogram(histogramBufferType))
override lazy val evaluateExpression: Expression =
GpuPercentileEvaluation(histogramBuffer, percentages, outputType, isReduction)
override def dataType: DataType = histogramBufferType
override def prettyName: String = "percentile"
override def nullable: Boolean = true
override def children: Seq[Expression] = Seq(childExpr, percentageLit)
private lazy val (returnPercentileArray, percentages): (Boolean, Either[Double, Array[Double]]) =
percentageLit.value match {
case null => (false, Right(Array()))
case num: Double => (false, Left(num))
case arrayData: ArrayData => (true, Right(arrayData.toDoubleArray()))
case other => throw new IllegalStateException(s"Invalid percentage expression: $other")
}
private lazy val outputType: DataType =
if (returnPercentileArray) ArrayType(DoubleType, containsNull = false) else DoubleType
}
/**
* Compute percentiles from just the input values.
*/
case class GpuPercentileDefault(childExpr: Expression, percentage: GpuLiteral,
isReduction: Boolean)
extends GpuPercentile(childExpr, percentage, isReduction) {
override lazy val inputProjection: Seq[Expression] = Seq(childExpr)
override lazy val updateAggregates: Seq[CudfAggregate] = Seq(CudfHistogram(histogramBufferType))
}
/**
* Compute percentiles from the input values associated with frequencies.
*/
case class GpuPercentileWithFrequency(childExpr: Expression, percentage: GpuLiteral,
frequencyExpr: Expression, isReduction: Boolean)
extends GpuPercentile(childExpr, percentage, isReduction) {
override lazy val inputProjection: Seq[Expression] = {
val outputType: DataType = if(isReduction) {
StructType(Seq(StructField("value", childExpr.dataType), StructField("frequency", LongType)))
} else {
histogramBufferType
}
Seq(GpuCreateHistogramIfValid(childExpr, frequencyExpr, isReduction, outputType))
}
override lazy val updateAggregates: Seq[CudfAggregate] =
Seq(CudfMergeHistogram(histogramBufferType))
}
/**
* Create a histogram buffer from the input values and frequencies.
*
* The frequencies are also checked to ensure that they are non-negative. If a negative frequency
* exists, an exception will be thrown.
*/
case class GpuCreateHistogramIfValid(valuesExpr: Expression, frequenciesExpr: Expression,
isReduction: Boolean, outputType: DataType)
extends GpuExpression with ShimExpression {
override def dataType: DataType = outputType
override def prettyName: String = "create_histogram_if_valid"
override def nullable: Boolean = false
override def children: Seq[Expression] = Seq(valuesExpr, frequenciesExpr)
override def columnarEval(batch: ColumnarBatch): GpuColumnVector = {
withResourceIfAllowed(valuesExpr.columnarEval(batch)) { values =>
withResourceIfAllowed(frequenciesExpr.columnarEval(batch)) { frequencies =>
// If a negative frequency exists, an exception will be thrown from here.
val histograms = Histogram.createHistogramIfValid(values.getBase, frequencies.getBase,
/*outputAsLists = */ !isReduction)
GpuColumnVector.from(histograms, outputType)
}
}
}
}
object GpuPercentile{
def apply(childExpr: Expression, percentageLit: GpuLiteral, frequencyExpr: Expression,
isReduction: Boolean): GpuPercentile = {
frequencyExpr match {
case GpuLiteral(freq, LongType) if freq == 1 =>
GpuPercentileDefault(childExpr, percentageLit, isReduction)
case _ =>
GpuPercentileWithFrequency(childExpr, percentageLit, frequencyExpr, isReduction)
}
}
}
/**
* Convert the incoming byte stream received from Spark CPU into internal histogram buffer format.
*/
case class CpuToGpuPercentileBufferConverter(elementType: DataType)
extends CpuToGpuAggregateBufferConverter {
override def createExpression(child: Expression): CpuToGpuBufferTransition =
CpuToGpuPercentileBufferTransition(child, elementType)
}
case class CpuToGpuPercentileBufferTransition(override val child: Expression, elementType: DataType)
extends CpuToGpuBufferTransition {
override def dataType: DataType =
ArrayType(StructType(Seq(StructField("value", elementType),
StructField("frequency", LongType))),
containsNull = false)
// Deserialization from the input byte stream into the internal histogram buffer format.
override protected def nullSafeEval(input: Any): ArrayData = {
val bytes = input.asInstanceOf[Array[Byte]]
val bis = new ByteArrayInputStream(bytes)
val ins = new DataInputStream(bis)
// Store a column of STRUCT
val histogram = ArrayBuffer[InternalRow]()
val row = new UnsafeRow(2)
try {
var sizeOfNextRow = ins.readInt()
while (sizeOfNextRow >= 0) {
val bs = new Array[Byte](sizeOfNextRow)
ins.readFully(bs)
row.pointTo(bs, sizeOfNextRow)
val element = row.get(0, elementType)
val count = row.get(1, LongType).asInstanceOf[Long]
histogram.append(InternalRow.apply(element, count))
sizeOfNextRow = ins.readInt()
}
ArrayData.toArrayData(histogram)
} finally {
ins.close()
bis.close()
}
}
}
/**
* Convert the internal histogram buffer into a byte stream that can be deserialized by Spark CPU.
*/
case class GpuToCpuPercentileBufferConverter(elementType: DataType)
extends GpuToCpuAggregateBufferConverter {
override def createExpression(child: Expression): GpuToCpuBufferTransition =
GpuToCpuPercentileBufferTransition(child, elementType)
}
case class GpuToCpuPercentileBufferTransition(override val child: Expression, elementType: DataType)
extends GpuToCpuBufferTransition {
// Serialization the internal histogram buffer into a byte array.
override protected def nullSafeEval(input: Any): Array[Byte] = {
val buffer = new Array[Byte](4 << 10) // 4K
val bos = new ByteArrayOutputStream()
val out = new DataOutputStream(bos)
val histogram = input.asInstanceOf[UnsafeArrayData]
val projection = UnsafeProjection.create(Array[DataType](elementType, LongType))
try {
(0 until histogram.numElements()).foreach { i =>
val row = histogram.getStruct(i, 2)
val element = row.get(0, elementType)
// The internal histogram buffer may contain null elements.
// We need to skip them as the Spark CPU does not process nulls after
// the updateAggregates step.
if(element!= null) {
val unsafeRow = projection.apply(row)
out.writeInt(unsafeRow.getSizeInBytes)
unsafeRow.writeToStream(out, buffer)
}
}
// Need to write a negative integer to indicate the end of the stream.
out.writeInt(-1)
out.flush()
bos.toByteArray
} finally {
out.close()
bos.close()
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy