org.apache.spark.sql.rapids.execution.ExistenceJoin.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.rapids.execution
import ai.rapids.cudf.{ColumnVector, GatherMap, NvtxColor, Scalar, Table}
import com.nvidia.spark.rapids.{GpuColumnVector, GpuMetric, LazySpillableColumnarBatch, NvtxWithMetrics, TaskAutoCloseableResource}
import com.nvidia.spark.rapids.Arm.withResource
import com.nvidia.spark.rapids.RmmRapidsRetryIterator.{withRestoreOnRetry, withRetryNoSplit}
import org.apache.spark.sql.types.BooleanType
import org.apache.spark.sql.vectorized.ColumnarBatch
/**
* Existence join generates an `exists` boolean column with `true` or `false` in it,
* then appends it to the `output` columns. The true in `exists` column indicates left table should
* retain that row, the row number of `exists` equals to the row number of left table.
*
* e.g.:
*
* select * from left_table where
* left_table.column_0 >= 3
* or
* exists (select * from right_table where left_table.column_1 < right_table.column_1)
*
* Explanation of this sql is:
*
* Filter(left_table.column_0 >= 3 or `exists`)
* Existence_join (left + `exists`) // `exists` do not shrink or expand the rows of left table
* left_table
* right_table
*
*/
abstract class ExistenceJoinIterator(
spillableBuiltBatch: LazySpillableColumnarBatch,
lazyStream: Iterator[LazySpillableColumnarBatch],
opTime: GpuMetric,
joinTime: GpuMetric
) extends Iterator[ColumnarBatch]()
with TaskAutoCloseableResource {
use(spillableBuiltBatch)
/**
* This method uses a left semijoin to construct a map of all indices
* into the left table batch pointing to rows that have a join partner on the
* right-hand side.
*
* Given Boolean column FC totaling as many rows as leftColumnarBatch, all having
* the value "false", scattering "true" into column FC will produce the "exists"
* column of ExistenceJoin
*/
def existsScatterMap(leftColumnarBatch: ColumnarBatch): GatherMap
override def hasNext: Boolean = {
val streamHasNext = lazyStream.hasNext
if (!streamHasNext) {
close()
}
streamHasNext
}
override def next(): ColumnarBatch = {
withResource(lazyStream.next()) { lazyBatch =>
withResource(new NvtxWithMetrics("existence join batch", NvtxColor.ORANGE, joinTime)) { _ =>
opTime.ns {
val ret = existenceJoinNextBatch(lazyBatch)
spillableBuiltBatch.allowSpilling()
ret
}
}
}
}
override def close(): Unit = {
opTime.ns {
super.close()
}
}
private def existenceJoinNextBatch(
spillableLeftBatch: LazySpillableColumnarBatch): ColumnarBatch = {
val batches = Seq(spillableBuiltBatch, spillableLeftBatch)
batches.foreach(_.checkpoint())
withRetryNoSplit {
withRestoreOnRetry(batches) {
// left columns with exists
withResource(existsScatterMap(spillableLeftBatch.getBatch)) { gatherMap =>
existenceJoinResult(spillableLeftBatch.getBatch, gatherMap)
}
}
}
}
/**
* Generate existence join result according to `gatherMap`: left columns with `exists` column
*/
def existenceJoinResult(leftColumnarBatch: ColumnarBatch, gatherMap: GatherMap): ColumnarBatch = {
// left columns with exists
withResource(existsColumn(leftColumnarBatch, gatherMap)) { existsColumn =>
val resCols = GpuColumnVector.extractBases(leftColumnarBatch) :+ existsColumn
val resTypes = GpuColumnVector.extractTypes(leftColumnarBatch) :+ BooleanType
withResource(new Table(resCols: _*)) { resTab =>
GpuColumnVector.from(resTab, resTypes)
}
}
}
private def existsColumn(leftColumnarBatch: ColumnarBatch,
existsScatterMap: GatherMap): ColumnVector = {
val numLeftRows = leftColumnarBatch.numRows
withResource(falseColumnTable(numLeftRows)) { allFalseTable =>
val numExistsTrueRows = existsScatterMap.getRowCount.toInt
withResource(existsScatterMap.toColumnView(0, numExistsTrueRows)) { existsView =>
withResource(Scalar.fromBool(true)) { trueScalar =>
withResource(Table.scatter(Array(trueScalar), existsView, allFalseTable)) {
_.getColumn(0).incRefCount()
}
}
}
}
}
private def falseColumnTable(numLeftRows: Int): Table = {
withResource(Scalar.fromBool(false)) { falseScalar =>
withResource(ai.rapids.cudf.ColumnVector.fromScalar(falseScalar, numLeftRows)) {
new Table(_)
}
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy