org.apache.spark.sql.rapids.execution.GpuBroadcastHashJoinExecBase.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2020-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.rapids.execution
import ai.rapids.cudf.{NvtxColor, NvtxRange}
import com.nvidia.spark.rapids._
import com.nvidia.spark.rapids.Arm.{closeOnExcept, withResource}
import com.nvidia.spark.rapids.shims.{GpuBroadcastJoinMeta, ShimBinaryExecNode}
import org.apache.spark.TaskContext
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.Expression
import org.apache.spark.sql.catalyst.plans.JoinType
import org.apache.spark.sql.catalyst.plans.physical.{BroadcastDistribution, Distribution, UnspecifiedDistribution}
import org.apache.spark.sql.execution.SparkPlan
import org.apache.spark.sql.execution.adaptive.BroadcastQueryStageExec
import org.apache.spark.sql.execution.exchange.ReusedExchangeExec
import org.apache.spark.sql.execution.joins.{BroadcastHashJoinExec, HashedRelationBroadcastMode}
import org.apache.spark.sql.types.StructType
import org.apache.spark.sql.vectorized.ColumnarBatch
abstract class GpuBroadcastHashJoinMetaBase(
join: BroadcastHashJoinExec,
conf: RapidsConf,
parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule)
extends GpuBroadcastJoinMeta[BroadcastHashJoinExec](join, conf, parent, rule) {
val leftKeys: Seq[BaseExprMeta[_]] =
join.leftKeys.map(GpuOverrides.wrapExpr(_, conf, Some(this)))
val rightKeys: Seq[BaseExprMeta[_]] =
join.rightKeys.map(GpuOverrides.wrapExpr(_, conf, Some(this)))
val conditionMeta: Option[BaseExprMeta[_]] =
join.condition.map(GpuOverrides.wrapExpr(_, conf, Some(this)))
val buildSide: GpuBuildSide = GpuJoinUtils.getGpuBuildSide(join.buildSide)
override val namedChildExprs: Map[String, Seq[BaseExprMeta[_]]] =
JoinTypeChecks.equiJoinMeta(leftKeys, rightKeys, conditionMeta)
override val childExprs: Seq[BaseExprMeta[_]] = leftKeys ++ rightKeys ++ conditionMeta
override def tagPlanForGpu(): Unit = {
GpuHashJoin.tagJoin(this, join.joinType, buildSide, join.leftKeys, join.rightKeys,
conditionMeta)
val Seq(leftChild, rightChild) = childPlans
val buildSideMeta = buildSide match {
case GpuBuildLeft => leftChild
case GpuBuildRight => rightChild
}
if (!canBuildSideBeReplaced(buildSideMeta)) {
if (conf.isSqlExplainOnlyEnabled && wrapped.conf.adaptiveExecutionEnabled) {
willNotWorkOnGpu("explain only mode with AQE, we cannot determine " +
"if the broadcast for this join is on the GPU too")
} else {
willNotWorkOnGpu("the broadcast for this join must be on the GPU too")
}
}
if (!canThisBeReplaced) {
buildSideMeta.willNotWorkOnGpu("the BroadcastHashJoin this feeds is not on the GPU")
}
}
// Called in runAfterTagRules for a special post tagging for this broadcast join.
def checkTagForBuildSide(): Unit = {
val Seq(leftChild, rightChild) = childPlans
val buildSideMeta = buildSide match {
case GpuBuildLeft => leftChild
case GpuBuildRight => rightChild
}
// Check both of the conditions to avoid duplicate reason string.
if (!canThisBeReplaced && canBuildSideBeReplaced(buildSideMeta)) {
buildSideMeta.willNotWorkOnGpu("the BroadcastHashJoin this feeds is not on the GPU")
}
if (canThisBeReplaced && !canBuildSideBeReplaced(buildSideMeta)) {
willNotWorkOnGpu("the broadcast for this join must be on the GPU too")
}
}
def convertToGpu(): GpuExec
}
abstract class GpuBroadcastHashJoinExecBase(
leftKeys: Seq[Expression],
rightKeys: Seq[Expression],
joinType: JoinType,
buildSide: GpuBuildSide,
override val condition: Option[Expression],
left: SparkPlan,
right: SparkPlan) extends ShimBinaryExecNode with GpuHashJoin {
import GpuMetric._
override val outputRowsLevel: MetricsLevel = ESSENTIAL_LEVEL
override val outputBatchesLevel: MetricsLevel = MODERATE_LEVEL
override lazy val additionalMetrics: Map[String, GpuMetric] = Map(
OP_TIME -> createNanoTimingMetric(MODERATE_LEVEL, DESCRIPTION_OP_TIME),
STREAM_TIME -> createNanoTimingMetric(DEBUG_LEVEL, DESCRIPTION_STREAM_TIME),
JOIN_TIME -> createNanoTimingMetric(DEBUG_LEVEL, DESCRIPTION_JOIN_TIME))
override def requiredChildDistribution: Seq[Distribution] = {
val mode = HashedRelationBroadcastMode(buildKeys)
buildSide match {
case GpuBuildLeft =>
BroadcastDistribution(mode) :: UnspecifiedDistribution :: Nil
case GpuBuildRight =>
UnspecifiedDistribution :: BroadcastDistribution(mode) :: Nil
}
}
def broadcastExchange: GpuBroadcastExchangeExec = buildPlan match {
case bqse: BroadcastQueryStageExec if bqse.plan.isInstanceOf[GpuBroadcastExchangeExec] =>
bqse.plan.asInstanceOf[GpuBroadcastExchangeExec]
case bqse: BroadcastQueryStageExec if bqse.plan.isInstanceOf[ReusedExchangeExec] =>
bqse.plan.asInstanceOf[ReusedExchangeExec].child.asInstanceOf[GpuBroadcastExchangeExec]
case gpu: GpuBroadcastExchangeExec => gpu
case reused: ReusedExchangeExec => reused.child.asInstanceOf[GpuBroadcastExchangeExec]
}
override def doExecute(): RDD[InternalRow] =
throw new IllegalStateException(
"GpuBroadcastHashJoin does not support row-based processing")
/**
* Gets the ColumnarBatch for the build side and the stream iterator by
* acquiring the GPU only after first stream batch has been streamed to GPU.
*
* `broadcastRelation` represents the broadcasted build side table on the host. The code
* in this function peaks at the stream side, after having wrapped it in a closeable
* buffered iterator, to cause the stream side to produce the first batch. This delays
* acquiring the semaphore until after the stream side performs all the steps needed
* (including IO) to produce that first batch. Once the first stream batch is produced,
* the build side is materialized to the GPU (while holding the semaphore).
*
* TODO: This could try to trigger the broadcast materialization on the host before
* getting started on the stream side (e.g. call `broadcastRelation.value`).
*/
private def getBroadcastBuiltBatchAndStreamIter(
broadcastRelation: Broadcast[Any],
buildSchema: StructType,
streamIter: Iterator[ColumnarBatch],
coalesceMetricsMap: Map[String, GpuMetric]): (ColumnarBatch, Iterator[ColumnarBatch]) = {
val bufferedStreamIter = new CloseableBufferedIterator(streamIter)
closeOnExcept(bufferedStreamIter) { _ =>
withResource(new NvtxRange("first stream batch", NvtxColor.RED)) { _ =>
if (bufferedStreamIter.hasNext) {
bufferedStreamIter.head
} else {
GpuSemaphore.acquireIfNecessary(TaskContext.get())
}
}
val buildBatch =
GpuBroadcastHelper.getBroadcastBatch(broadcastRelation, buildSchema)
(buildBatch, bufferedStreamIter)
}
}
protected def doColumnarBroadcastJoin(): RDD[ColumnarBatch] = {
val numOutputRows = gpuLongMetric(NUM_OUTPUT_ROWS)
val numOutputBatches = gpuLongMetric(NUM_OUTPUT_BATCHES)
val opTime = gpuLongMetric(OP_TIME)
val streamTime = gpuLongMetric(STREAM_TIME)
val joinTime = gpuLongMetric(JOIN_TIME)
val targetSize = RapidsConf.GPU_BATCH_SIZE_BYTES.get(conf)
val broadcastRelation = broadcastExchange.executeColumnarBroadcast[Any]()
val rdd = streamedPlan.executeColumnar()
val buildSchema = buildPlan.schema
rdd.mapPartitions { it =>
val (builtBatch, streamIter) =
getBroadcastBuiltBatchAndStreamIter(
broadcastRelation,
buildSchema,
new CollectTimeIterator("broadcast join stream", it, streamTime),
allMetrics)
// builtBatch will be closed in doJoin
doJoin(builtBatch, streamIter, targetSize, numOutputRows, numOutputBatches, opTime, joinTime)
}
}
override def internalDoExecuteColumnar(): RDD[ColumnarBatch] = {
doColumnarBroadcastJoin()
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy