org.apache.spark.sql.rapids.execution.GpuBroadcastNestedLoopJoinExecBase.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2020-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.rapids.execution
import ai.rapids.cudf
import ai.rapids.cudf.{ast, GatherMap, NvtxColor, OutOfBoundsPolicy, Scalar, Table}
import ai.rapids.cudf.ast.CompiledExpression
import com.nvidia.spark.rapids._
import com.nvidia.spark.rapids.Arm.{closeOnExcept, withResource}
import com.nvidia.spark.rapids.RapidsPluginImplicits.AutoCloseableProducingArray
import com.nvidia.spark.rapids.RmmRapidsRetryIterator.{withRestoreOnRetry, withRetry, withRetryNoSplit}
import com.nvidia.spark.rapids.shims.{GpuBroadcastJoinMeta, ShimBinaryExecNode}
import org.apache.spark.TaskContext
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.catalyst.expressions.{Attribute, Expression, NamedExpression}
import org.apache.spark.sql.catalyst.plans.{ExistenceJoin, FullOuter, InnerLike, JoinType, LeftAnti, LeftExistence, LeftOuter, LeftSemi, RightOuter}
import org.apache.spark.sql.catalyst.plans.physical.{BroadcastDistribution, Distribution, IdentityBroadcastMode, UnspecifiedDistribution}
import org.apache.spark.sql.execution.SparkPlan
import org.apache.spark.sql.execution.adaptive.BroadcastQueryStageExec
import org.apache.spark.sql.execution.exchange.ReusedExchangeExec
import org.apache.spark.sql.execution.joins.BroadcastNestedLoopJoinExec
import org.apache.spark.sql.types.{BooleanType, DataType}
import org.apache.spark.sql.vectorized.{ColumnarBatch, ColumnVector}
abstract class GpuBroadcastNestedLoopJoinMetaBase(
join: BroadcastNestedLoopJoinExec,
conf: RapidsConf,
parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule)
extends GpuBroadcastJoinMeta[BroadcastNestedLoopJoinExec](join, conf, parent, rule) {
val conditionMeta: Option[BaseExprMeta[_]] =
join.condition.map(GpuOverrides.wrapExpr(_, conf, Some(this)))
val gpuBuildSide: GpuBuildSide = GpuJoinUtils.getGpuBuildSide(join.buildSide)
private var taggedForAstCheck = false
// Avoid checking multiple times
private var isAstCond = false
/**
* Check whether condition can be ast-able. It includes two cases: 1) all join conditions are
* ast-able; 2) join conditions are ast-able after split and push down to child plans.
*/
protected def canJoinCondAstAble(): Boolean = {
if (!taggedForAstCheck) {
val Seq(leftPlan, rightPlan) = childPlans
conditionMeta match {
case Some(e) => isAstCond = AstUtil.canExtractNonAstConditionIfNeed(
e, leftPlan.outputAttributes.map(_.exprId), rightPlan.outputAttributes.map(_.exprId))
case None => isAstCond = true
}
taggedForAstCheck = true
}
isAstCond
}
override def namedChildExprs: Map[String, Seq[BaseExprMeta[_]]] =
JoinTypeChecks.nonEquiJoinMeta(conditionMeta)
override val childExprs: Seq[BaseExprMeta[_]] = conditionMeta.toSeq
override def tagPlanForGpu(): Unit = {
JoinTypeChecks.tagForGpu(join.joinType, this)
join.joinType match {
case _: InnerLike =>
case LeftOuter | RightOuter | LeftSemi | LeftAnti | ExistenceJoin(_) =>
// First to check whether can be split if not ast-able. If false, then check requireAst to
// send not-work-on-GPU reason if not replace-able.
conditionMeta.foreach(cond => if (!canJoinCondAstAble()) requireAstForGpuOn(cond))
case _ => willNotWorkOnGpu(s"${join.joinType} currently is not supported")
}
join.joinType match {
case LeftOuter | LeftSemi | LeftAnti if gpuBuildSide == GpuBuildLeft =>
willNotWorkOnGpu(s"build left not supported for ${join.joinType}")
case RightOuter if gpuBuildSide == GpuBuildRight =>
willNotWorkOnGpu(s"build right not supported for ${join.joinType}")
case _ =>
}
val Seq(leftPlan, rightPlan) = childPlans
val buildSide = gpuBuildSide match {
case GpuBuildLeft => leftPlan
case GpuBuildRight => rightPlan
}
if (!canBuildSideBeReplaced(buildSide)) {
willNotWorkOnGpu("the broadcast for this join must be on the GPU too")
}
if (!canThisBeReplaced) {
buildSide.willNotWorkOnGpu(
"the BroadcastNestedLoopJoin this feeds is not on the GPU")
}
}
// Called in runAfterTagRules for a special post tagging for this broadcast join.
def checkTagForBuildSide(): Unit = {
val Seq(leftChild, rightChild) = childPlans
val buildSideMeta = gpuBuildSide match {
case GpuBuildLeft => leftChild
case GpuBuildRight => rightChild
}
// Check both of the conditions to avoid duplicate reason string.
if (!canThisBeReplaced && canBuildSideBeReplaced(buildSideMeta)) {
buildSideMeta.willNotWorkOnGpu("the BroadcastNestedLoopJoin this feeds is not on the GPU")
}
if (canThisBeReplaced && !canBuildSideBeReplaced(buildSideMeta)) {
willNotWorkOnGpu("the broadcast for this join must be on the GPU too")
}
}
}
/**
* An iterator that does a cross join against a stream of batches.
*/
class CrossJoinIterator(
builtBatch: LazySpillableColumnarBatch,
stream: Iterator[LazySpillableColumnarBatch],
targetSize: Long,
buildSide: GpuBuildSide,
opTime: GpuMetric,
joinTime: GpuMetric)
extends AbstractGpuJoinIterator(
"Cross join gather",
targetSize,
opTime,
joinTime) {
override def close(): Unit = {
if (!closed) {
super.close()
builtBatch.close()
}
}
override def hasNextStreamBatch: Boolean = stream.hasNext
override def setupNextGatherer(): Option[JoinGatherer] = {
val streamBatch = stream.next()
// Don't include stream in op time.
opTime.ns {
// Don't close the built side because it will be used for each stream and closed
// when the iterator is done.
val (leftBatch, rightBatch) = buildSide match {
case GpuBuildLeft => (LazySpillableColumnarBatch.spillOnly(builtBatch), streamBatch)
case GpuBuildRight => (streamBatch, LazySpillableColumnarBatch.spillOnly(builtBatch))
}
val leftMap = LazySpillableGatherMap.leftCross(leftBatch.numRows, rightBatch.numRows)
val rightMap = LazySpillableGatherMap.rightCross(leftBatch.numRows, rightBatch.numRows)
// Cross joins do not need to worry about bounds checking because the gather maps
// are generated using mod and div based on the number of rows on the left and
// right, so we specify here `DONT_CHECK` for all.
val joinGatherer = (leftBatch.numCols, rightBatch.numCols) match {
case (_, 0) =>
rightBatch.close()
rightMap.close()
JoinGatherer(leftMap, leftBatch, OutOfBoundsPolicy.DONT_CHECK)
case (0, _) =>
leftBatch.close()
leftMap.close()
JoinGatherer(rightMap, rightBatch, OutOfBoundsPolicy.DONT_CHECK)
case (_, _) =>
JoinGatherer(leftMap, leftBatch, rightMap, rightBatch,
OutOfBoundsPolicy.DONT_CHECK, OutOfBoundsPolicy.DONT_CHECK)
}
if (joinGatherer.isDone) {
joinGatherer.close()
None
} else {
Some(joinGatherer)
}
}
}
}
class ConditionalNestedLoopJoinIterator(
joinType: JoinType,
buildSide: GpuBuildSide,
builtBatch: LazySpillableColumnarBatch,
stream: Iterator[LazySpillableColumnarBatch],
streamAttributes: Seq[Attribute],
targetSize: Long,
condition: ast.CompiledExpression,
opTime: GpuMetric,
joinTime: GpuMetric)
extends SplittableJoinIterator(
s"$joinType join gather",
stream,
streamAttributes,
builtBatch,
targetSize,
opTime = opTime,
joinTime = joinTime) {
override def close(): Unit = {
if (!closed) {
super.close()
condition.close()
}
}
override def computeNumJoinRows(scb: LazySpillableColumnarBatch): Long = {
scb.checkpoint()
builtBatch.checkpoint()
withRetryNoSplit {
withRestoreOnRetry(Seq(builtBatch, scb)) {
withResource(GpuColumnVector.from(builtBatch.getBatch)) { builtTable =>
withResource(GpuColumnVector.from(scb.getBatch)) { streamTable =>
val (left, right) = buildSide match {
case GpuBuildLeft => (builtTable, streamTable)
case GpuBuildRight => (streamTable, builtTable)
}
joinType match {
case _: InnerLike => left.conditionalInnerJoinRowCount(right, condition)
case LeftOuter => left.conditionalLeftJoinRowCount(right, condition)
case RightOuter => right.conditionalLeftJoinRowCount(left, condition)
case LeftSemi => left.conditionalLeftSemiJoinRowCount(right, condition)
case LeftAnti => left.conditionalLeftAntiJoinRowCount(right, condition)
case _ => throw new IllegalStateException(s"Unsupported join type $joinType")
}
}
}
}
}
}
override def createGatherer(
cb: LazySpillableColumnarBatch,
numJoinRows: Option[Long]): Option[JoinGatherer] = {
if (numJoinRows.contains(0)) {
// nothing matched
return None
}
// cb will be closed by the caller, so use a spill-only version here
val spillOnlyCb = LazySpillableColumnarBatch.spillOnly(cb)
val batches = Seq(builtBatch, spillOnlyCb)
batches.foreach(_.checkpoint())
withRetryNoSplit {
withRestoreOnRetry(batches) {
withResource(GpuColumnVector.from(builtBatch.getBatch)) { builtTable =>
withResource(GpuColumnVector.from(cb.getBatch)) { streamTable =>
// We need a new LSCB that will be taken over by the gatherer, or closed
closeOnExcept(LazySpillableColumnarBatch(spillOnlyCb.getBatch, "stream_data")) {
streamBatch =>
val builtSpillOnly = LazySpillableColumnarBatch.spillOnly(builtBatch)
val (leftTable, leftBatch, rightTable, rightBatch) = buildSide match {
case GpuBuildLeft => (builtTable, builtSpillOnly, streamTable, streamBatch)
case GpuBuildRight => (streamTable, streamBatch, builtTable, builtSpillOnly)
}
val maps = computeGatherMaps(leftTable, rightTable, numJoinRows)
makeGatherer(maps, leftBatch, rightBatch, joinType)
}
}
}
}
}
}
private def computeGatherMaps(
left: Table,
right: Table,
numJoinRows: Option[Long]): Array[GatherMap] = {
joinType match {
case _: InnerLike =>
numJoinRows.map { rowCount =>
left.conditionalInnerJoinGatherMaps(right, condition, rowCount)
}.getOrElse {
left.conditionalInnerJoinGatherMaps(right, condition)
}
case LeftOuter =>
numJoinRows.map { rowCount =>
left.conditionalLeftJoinGatherMaps(right, condition, rowCount)
}.getOrElse {
left.conditionalLeftJoinGatherMaps(right, condition)
}
case RightOuter =>
val maps = numJoinRows.map { rowCount =>
right.conditionalLeftJoinGatherMaps(left, condition, rowCount)
}.getOrElse {
right.conditionalLeftJoinGatherMaps(left, condition)
}
// Reverse the output of the join, because we expect the right gather map to
// always be on the right
maps.reverse
case LeftSemi =>
numJoinRows.map { rowCount =>
Array(left.conditionalLeftSemiJoinGatherMap(right, condition, rowCount))
}.getOrElse {
Array(left.conditionalLeftSemiJoinGatherMap(right, condition))
}
case LeftAnti =>
numJoinRows.map { rowCount =>
Array(left.conditionalLeftAntiJoinGatherMap(right, condition, rowCount))
}.getOrElse {
Array(left.conditionalLeftAntiJoinGatherMap(right, condition))
}
case _ => throw new IllegalStateException(s"Unsupported join type $joinType")
}
}
}
object GpuBroadcastNestedLoopJoinExecBase {
def nestedLoopJoin(
joinType: JoinType,
buildSide: GpuBuildSide,
numFirstTableColumns: Int,
builtBatch: LazySpillableColumnarBatch,
stream: Iterator[LazySpillableColumnarBatch],
streamAttributes: Seq[Attribute],
targetSize: Long,
boundCondition: Option[GpuExpression],
numOutputRows: GpuMetric,
numOutputBatches: GpuMetric,
opTime: GpuMetric,
joinTime: GpuMetric): Iterator[ColumnarBatch] = {
val joinIterator = if (boundCondition.isEmpty) {
// Semi and anti nested loop joins without a condition are degenerate joins and should have
// been handled at a higher level rather than calling this method.
assert(joinType.isInstanceOf[InnerLike], s"Unexpected unconditional join type: $joinType")
new CrossJoinIterator(builtBatch, stream, targetSize, buildSide, opTime, joinTime)
} else {
if (joinType.isInstanceOf[ExistenceJoin]) {
if (builtBatch.numCols == 0) {
degenerateExistsJoinIterator(stream, builtBatch, boundCondition.get)
} else {
val compiledAst = boundCondition.get.convertToAst(numFirstTableColumns).compile()
new ConditionalNestedLoopExistenceJoinIterator(
builtBatch, stream, compiledAst, opTime, joinTime)
}
} else {
val compiledAst = boundCondition.get.convertToAst(numFirstTableColumns).compile()
new ConditionalNestedLoopJoinIterator(joinType, buildSide, builtBatch,
stream, streamAttributes, targetSize, compiledAst,
opTime = opTime, joinTime = joinTime)
}
}
joinIterator.map { cb =>
numOutputRows += cb.numRows()
numOutputBatches += 1
cb
}
}
private def degenerateExistsJoinIterator(
stream: Iterator[LazySpillableColumnarBatch],
builtBatch: LazySpillableColumnarBatch,
boundCondition: GpuExpression): Iterator[ColumnarBatch] = {
new Iterator[ColumnarBatch] {
override def hasNext: Boolean = stream.hasNext
override def next(): ColumnarBatch = {
withResource(stream.next()) { streamSpillable =>
val streamBatch = streamSpillable.getBatch
val existsCol: ColumnVector = if (builtBatch.numRows == 0) {
withResource(Scalar.fromBool(false)) { falseScalar =>
GpuColumnVector.from(
cudf.ColumnVector.fromScalar(falseScalar, streamBatch.numRows),
BooleanType)
}
} else {
withResource(boundCondition.columnarEval(streamBatch)) { condEval =>
withResource(Scalar.fromBool(false)) { falseScalar =>
GpuColumnVector.from(condEval.getBase.replaceNulls(falseScalar), BooleanType)
}
}
}
withResource(new ColumnarBatch(Array(existsCol), streamBatch.numRows)) { existsBatch =>
GpuColumnVector.combineColumns(streamBatch, existsBatch)
}
}
}
}
}
def output(joinType: JoinType, left: Seq[Attribute], right: Seq[Attribute]): Seq[Attribute] = {
joinType match {
case _: InnerLike => left ++ right
case LeftOuter => left ++ right.map(_.withNullability(true))
case RightOuter => left.map(_.withNullability(true)) ++ right
case FullOuter =>
left.map(_.withNullability(true)) ++ right.map(_.withNullability(true))
case j: ExistenceJoin => left :+ j.exists
case LeftExistence(_) => left
case x =>
throw new IllegalArgumentException(
s"BroadcastNestedLoopJoin should not take $x as the JoinType")
}
}
def divideIntoBatches(
rowCounts: RDD[Long],
targetSizeBytes: Long,
numOutputRows: GpuMetric,
numOutputBatches: GpuMetric): RDD[ColumnarBatch] = {
// Hash aggregate explodes the rows out, so if we go too large
// it can blow up. The size of a Long is 8 bytes so we just go with
// that as our estimate, no nulls.
val maxRowCount = targetSizeBytes / 8
def divideIntoBatches(rows: Long): Iterable[ColumnarBatch] = {
val numBatches = (rows + maxRowCount - 1) / maxRowCount
(0L until numBatches).map(i => {
val ret = new ColumnarBatch(new Array[ColumnVector](0))
if ((i + 1) * maxRowCount > rows) {
ret.setNumRows((rows - (i * maxRowCount)).toInt)
} else {
ret.setNumRows(maxRowCount.toInt)
}
numOutputRows += ret.numRows()
numOutputBatches += 1
// grab the semaphore for downstream processing
GpuSemaphore.acquireIfNecessary(TaskContext.get())
ret
})
}
rowCounts.flatMap(divideIntoBatches)
}
}
// postBuildCondition is the post-broadcast project condition. It's used to re-construct a tiered
// project to handle pre-built batch. It will be removed after code refactor to decouple
// broadcast and nested loop join.
abstract class GpuBroadcastNestedLoopJoinExecBase(
left: SparkPlan,
right: SparkPlan,
joinType: JoinType,
gpuBuildSide: GpuBuildSide,
condition: Option[Expression],
postBuildCondition: List[NamedExpression],
targetSizeBytes: Long) extends ShimBinaryExecNode with GpuExec {
import GpuMetric._
override protected def doExecute(): RDD[InternalRow] =
throw new IllegalStateException("This should only be called from columnar")
override val outputRowsLevel: MetricsLevel = ESSENTIAL_LEVEL
override val outputBatchesLevel: MetricsLevel = MODERATE_LEVEL
override lazy val additionalMetrics: Map[String, GpuMetric] = Map(
OP_TIME -> createNanoTimingMetric(MODERATE_LEVEL, DESCRIPTION_OP_TIME),
BUILD_DATA_SIZE -> createSizeMetric(MODERATE_LEVEL, DESCRIPTION_BUILD_DATA_SIZE),
BUILD_TIME -> createNanoTimingMetric(MODERATE_LEVEL, DESCRIPTION_BUILD_TIME),
JOIN_TIME -> createNanoTimingMetric(DEBUG_LEVEL, DESCRIPTION_JOIN_TIME))
/** BuildRight means the right relation <=> the broadcast relation. */
val (streamed, buildPlan) = gpuBuildSide match {
case GpuBuildRight => (left, right)
case GpuBuildLeft => (right, left)
}
def broadcastExchange: GpuBroadcastExchangeExecBase = getBroadcastPlan(buildPlan) match {
case bqse: BroadcastQueryStageExec if bqse.plan.isInstanceOf[GpuBroadcastExchangeExecBase] =>
bqse.plan.asInstanceOf[GpuBroadcastExchangeExecBase]
case bqse: BroadcastQueryStageExec if bqse.plan.isInstanceOf[ReusedExchangeExec] =>
bqse.plan.asInstanceOf[ReusedExchangeExec].child.asInstanceOf[GpuBroadcastExchangeExecBase]
case gpu: GpuBroadcastExchangeExecBase => gpu
case reused: ReusedExchangeExec => reused.child.asInstanceOf[GpuBroadcastExchangeExecBase]
}
private[this] def getBroadcastPlan(plan: SparkPlan): SparkPlan = {
plan match {
// In case has post broadcast project. It happens when join condition contains non-AST
// expression which results in a project right after broadcast.
case plan: GpuProjectExec => plan.child
case _ => plan
}
}
override def requiredChildDistribution: Seq[Distribution] = gpuBuildSide match {
case GpuBuildLeft =>
BroadcastDistribution(IdentityBroadcastMode) :: UnspecifiedDistribution :: Nil
case GpuBuildRight =>
UnspecifiedDistribution :: BroadcastDistribution(IdentityBroadcastMode) :: Nil
}
override def output: Seq[Attribute] = {
GpuBroadcastNestedLoopJoinExecBase.output(joinType, left.output, right.output)
}
protected def makeBroadcastBuiltBatch(
broadcastRelation: Broadcast[Any],
buildTime: GpuMetric,
buildDataSize: GpuMetric): ColumnarBatch = {
withResource(new NvtxWithMetrics("build join table", NvtxColor.GREEN, buildTime)) { _ =>
val builtBatch = GpuBroadcastHelper.getBroadcastBatch(broadcastRelation, buildPlan.schema)
buildDataSize += GpuColumnVector.getTotalDeviceMemoryUsed(builtBatch)
builtBatch
}
}
protected def computeBroadcastBuildRowCount(
broadcastRelation: Broadcast[Any],
buildTime: GpuMetric,
buildDataSize: GpuMetric): Int = {
withResource(new NvtxWithMetrics("build join table", NvtxColor.GREEN, buildTime)) { _ =>
buildDataSize += 0
GpuBroadcastHelper.getBroadcastBatchNumRows(broadcastRelation)
}
}
protected def makeBuiltBatchInternal(
relation: Any,
buildTime: GpuMetric,
buildDataSize: GpuMetric): ColumnarBatch = {
// NOTE: pattern matching doesn't work here because of type-invariance
val broadcastRelation = relation.asInstanceOf[Broadcast[Any]]
makeBroadcastBuiltBatch(broadcastRelation, buildTime, buildDataSize)
}
final def makeBuiltBatch(
relation: Any,
buildTime: GpuMetric,
buildDataSize: GpuMetric): ColumnarBatch = {
buildPlan match {
case p: GpuProjectExec =>
// Need to manually do project columnar execution other than calling child's
// internalDoExecuteColumnar. This is to workaround especial handle to build broadcast
// batch.
val proj = GpuBindReferences.bindGpuReferencesTiered(
postBuildCondition, p.child.output, conf)
withResource(makeBuiltBatchInternal(relation, buildTime, buildDataSize)) {
cb => proj.project(cb)
}
case _ => makeBuiltBatchInternal(relation, buildTime, buildDataSize)
}
}
protected def computeBuildRowCount(
relation: Any,
buildTime: GpuMetric,
buildDataSize: GpuMetric): Int = {
// NOTE: pattern matching doesn't work here because of type-invariance
val broadcastRelation = relation.asInstanceOf[Broadcast[Any]]
computeBroadcastBuildRowCount(broadcastRelation, buildTime, buildDataSize)
}
protected def getBroadcastRelation(): Any = {
broadcastExchange.executeColumnarBroadcast[Any]()
}
private def isUnconditionalJoin(condition: Option[GpuExpression]): Boolean = {
condition.forall {
case GpuLiteral(true, BooleanType) =>
// Spark can generate a degenerate conditional join when the join keys are constants
true
case GpuAlias(e: GpuExpression, _) => isUnconditionalJoin(Some(e))
case _ => false
}
}
override def internalDoExecuteColumnar(): RDD[ColumnarBatch] = {
// Determine which table will be first in the join and bind the references accordingly
// so the AST column references match the appropriate table.
val (firstTable, secondTable) = joinType match {
case RightOuter => (right, left)
case _ => (left, right)
}
val numFirstTableColumns = firstTable.output.size
val boundCondition = condition.map {
GpuBindReferences.bindGpuReference(_, firstTable.output ++ secondTable.output)
}
val broadcastRelation = getBroadcastRelation()
// Sometimes Spark specifies a true condition for a row-count-only join.
// This can happen when the join keys are detected to be constant.
if (isUnconditionalJoin(boundCondition)) {
doUnconditionalJoin(broadcastRelation)
} else {
doConditionalJoin(broadcastRelation, boundCondition, numFirstTableColumns)
}
}
private def leftExistenceJoin(
relation: Any,
exists: Boolean,
buildTime: GpuMetric,
buildDataSize: GpuMetric): RDD[ColumnarBatch] = {
assert(gpuBuildSide == GpuBuildRight)
streamed.executeColumnar().mapPartitionsInternal { streamedIter =>
val buildRows = computeBuildRowCount(relation, buildTime, buildDataSize)
if (buildRows > 0 == exists) {
streamedIter
} else {
Iterator.empty
}
}
}
private def doUnconditionalJoin(relation: Any): RDD[ColumnarBatch] = {
if (output.isEmpty) {
doUnconditionalJoinRowCount(relation)
} else {
val numOutputRows = gpuLongMetric(NUM_OUTPUT_ROWS)
val numOutputBatches = gpuLongMetric(NUM_OUTPUT_BATCHES)
val buildTime = gpuLongMetric(BUILD_TIME)
val opTime = gpuLongMetric(OP_TIME)
val buildDataSize = gpuLongMetric(BUILD_DATA_SIZE)
val localJoinType = joinType
// NOTE: this is a def because we want a brand new `ColumnarBatch` to be returned
// per partition (task), since each task is going to be taking ownership
// of a columnar batch via `LazySpillableColumnarBatch`.
// There are better ways to fix this: https://github.com/NVIDIA/spark-rapids/issues/7642
def builtBatch = {
makeBuiltBatch(relation, buildTime, buildDataSize)
}
val joinIterator: RDD[ColumnarBatch] = joinType match {
case ExistenceJoin(_) =>
doUnconditionalExistenceJoin(relation, buildTime, buildDataSize)
case LeftSemi =>
if (gpuBuildSide == GpuBuildRight) {
leftExistenceJoin(relation, exists=true, buildTime, buildDataSize)
} else {
left.executeColumnar()
}
case LeftAnti =>
if (gpuBuildSide == GpuBuildRight) {
leftExistenceJoin(relation, exists=false, buildTime, buildDataSize)
} else {
// degenerate case, no rows are returned.
val childRDD = left.executeColumnar()
new GpuCoalesceExec.EmptyRDDWithPartitions(sparkContext, childRDD.getNumPartitions)
}
case _ =>
// Everything else is treated like an unconditional cross join
val buildSide = gpuBuildSide
val joinTime = gpuLongMetric(JOIN_TIME)
streamed.executeColumnar().mapPartitions { streamedIter =>
val lazyStream = streamedIter.map { cb =>
withResource(cb) { cb =>
LazySpillableColumnarBatch(cb, "stream_batch")
}
}
val spillableBuiltBatch = withResource(builtBatch) {
LazySpillableColumnarBatch(_, "built_batch")
}
localJoinType match {
case LeftOuter if spillableBuiltBatch.numRows == 0 =>
new EmptyOuterNestedLoopJoinIterator(streamedIter, spillableBuiltBatch.dataTypes,
true)
case RightOuter if spillableBuiltBatch.numRows == 0 =>
new EmptyOuterNestedLoopJoinIterator(streamedIter, spillableBuiltBatch.dataTypes,
false)
case _ =>
new CrossJoinIterator(
spillableBuiltBatch,
lazyStream,
targetSizeBytes,
buildSide,
opTime = opTime,
joinTime = joinTime)
}
}
}
joinIterator.map { cb =>
numOutputRows += cb.numRows()
numOutputBatches += 1
cb
}
}
}
/**
* Special-case handling of an unconditional existence join that just needs to output the left
* table along with an existence column that is all true if the right table has any rows or
* all false otherwise.
*/
private def doUnconditionalExistenceJoin(
relation: Any,
buildTime: GpuMetric,
buildDataSize: GpuMetric): RDD[ColumnarBatch] = {
def addExistsColumn(iter: Iterator[ColumnarBatch], exists: Boolean): Iterator[ColumnarBatch] = {
iter.flatMap { batch =>
val spillable = SpillableColumnarBatch(batch, SpillPriorities.ACTIVE_ON_DECK_PRIORITY)
withRetry(spillable, RmmRapidsRetryIterator.splitSpillableInHalfByRows) { spillBatch =>
withResource(spillBatch.getColumnarBatch()) { batch =>
GpuColumnVector.incRefCounts(batch)
val newCols = new Array[ColumnVector](batch.numCols + 1)
(0 until newCols.length - 1).foreach { i =>
newCols(i) = batch.column(i)
}
val existsCol = withResource(Scalar.fromBool(exists)) { existsScalar =>
GpuColumnVector.from(cudf.ColumnVector.fromScalar(existsScalar, batch.numRows),
BooleanType)
}
newCols(batch.numCols) = existsCol
new ColumnarBatch(newCols, batch.numRows)
}
}
}
}
if (gpuBuildSide == GpuBuildRight) {
left.executeColumnar.mapPartitions { iter =>
val buildHasRows = computeBuildRowCount(relation, buildTime, buildDataSize) > 0
addExistsColumn(iter, buildHasRows)
}
} else {
// try to check cheaply whether there are any rows in the streamed table at all
val streamTakePlan = GpuColumnarToRowExec(GpuLocalLimitExec(1, streamed))
val streamExists = !streamTakePlan.executeTake(1).isEmpty
val leftRDD = GpuBroadcastHelper.asRDD(sparkContext,relation.asInstanceOf[Broadcast[Any]])
leftRDD.mapPartitions { iter =>
addExistsColumn(iter, streamExists)
}
}
}
/** Special-case handling of an unconditional join that just needs to output a row count. */
private def doUnconditionalJoinRowCount(relation: Any): RDD[ColumnarBatch] = {
if (joinType == LeftAnti) {
// degenerate case, no rows are returned.
left.executeColumnar().mapPartitions { _ =>
Iterator.single(new ColumnarBatch(Array(), 0))
}
} else {
lazy val buildCount = if (joinType == LeftSemi || joinType.isInstanceOf[ExistenceJoin]) {
// one-to-one mapping from input rows to output rows
1
} else {
val buildTime = gpuLongMetric(BUILD_TIME)
val buildDataSize = gpuLongMetric(BUILD_DATA_SIZE)
computeBuildRowCount(relation, buildTime, buildDataSize)
}
def getRowCountAndClose(cb: ColumnarBatch): Long = {
val ret = cb.numRows()
cb.close()
GpuSemaphore.releaseIfNecessary(TaskContext.get())
ret
}
val numOutputRows = gpuLongMetric(NUM_OUTPUT_ROWS)
val numOutputBatches = gpuLongMetric(NUM_OUTPUT_BATCHES)
val counts = streamed.executeColumnar().map(getRowCountAndClose)
GpuBroadcastNestedLoopJoinExecBase.divideIntoBatches(
counts.map(s => s * buildCount),
targetSizeBytes,
numOutputRows,
numOutputBatches)
}
}
private def doConditionalJoin(
relation: Any,
boundCondition: Option[GpuExpression],
numFirstTableColumns: Int): RDD[ColumnarBatch] = {
val buildTime = gpuLongMetric(BUILD_TIME)
val buildDataSize = gpuLongMetric(BUILD_DATA_SIZE)
// NOTE: this is a def because we want a brand new `ColumnarBatch` to be returned
// per partition (task), since each task is going to be taking ownership
// of a columnar batch via `LazySpillableColumnarBatch`.
// There are better ways to fix this: https://github.com/NVIDIA/spark-rapids/issues/7642
def builtBatch: ColumnarBatch = {
makeBuiltBatch(relation, buildTime, buildDataSize)
}
val streamAttributes = streamed.output
val numOutputRows = gpuLongMetric(NUM_OUTPUT_ROWS)
val numOutputBatches = gpuLongMetric(NUM_OUTPUT_BATCHES)
val opTime = gpuLongMetric(OP_TIME)
val joinTime = gpuLongMetric(JOIN_TIME)
val nestedLoopJoinType = joinType
val buildSide = gpuBuildSide
streamed.executeColumnar().mapPartitions { streamedIter =>
val lazyStream = streamedIter.map { cb =>
withResource(cb) { cb =>
LazySpillableColumnarBatch(cb, "stream_batch")
}
}
val spillableBuiltBatch = withResource(builtBatch) {
LazySpillableColumnarBatch(_, "built_batch")
}
GpuBroadcastNestedLoopJoinExecBase.nestedLoopJoin(
nestedLoopJoinType, buildSide, numFirstTableColumns,
spillableBuiltBatch,
lazyStream, streamAttributes, targetSizeBytes, boundCondition,
numOutputRows = numOutputRows,
numOutputBatches = numOutputBatches,
opTime = opTime,
joinTime = joinTime)
}
}
}
class ConditionalNestedLoopExistenceJoinIterator(
spillableBuiltBatch: LazySpillableColumnarBatch,
lazyStream: Iterator[LazySpillableColumnarBatch],
condition: CompiledExpression,
opTime: GpuMetric,
joinTime: GpuMetric
) extends ExistenceJoinIterator(spillableBuiltBatch, lazyStream, opTime, joinTime) {
use(condition)
override def existsScatterMap(leftColumnarBatch: ColumnarBatch): GatherMap = {
withResource(
new NvtxWithMetrics("existence join scatter map", NvtxColor.ORANGE, joinTime)) { _ =>
withResource(GpuColumnVector.from(leftColumnarBatch)) { leftTab =>
withResource(GpuColumnVector.from(spillableBuiltBatch.getBatch)) { rightTab =>
leftTab.conditionalLeftSemiJoinGatherMap(rightTab, condition)
}
}
}
}
}
/** Iterator for producing batches from an outer join where the build-side table is empty. */
class EmptyOuterNestedLoopJoinIterator(
streamIter: Iterator[ColumnarBatch],
buildTypes: Array[DataType],
isStreamFirst: Boolean) extends Iterator[ColumnarBatch] {
override def hasNext: Boolean = streamIter.hasNext
override def next(): ColumnarBatch = {
withResource(streamIter.next()) { streamBatch =>
withResource(buildNullBatch(streamBatch.numRows())) { nullBatch =>
if (isStreamFirst) {
GpuColumnVector.combineColumns(streamBatch, nullBatch)
} else {
GpuColumnVector.combineColumns(nullBatch, streamBatch)
}
}
}
}
private def buildNullBatch(numRows: Int): ColumnarBatch = {
val cols: Array[ColumnVector] = buildTypes.safeMap { dt =>
GpuColumnVector.fromNull(numRows, dt)
}
new ColumnarBatch(cols, numRows)
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy