org.apache.spark.sql.rapids.stringFunctions.scala Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of rapids-4-spark_2.13 Show documentation
Show all versions of rapids-4-spark_2.13 Show documentation
Creates the distribution package of the RAPIDS plugin for Apache Spark
The newest version!
/*
* Copyright (c) 2019-2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.sql.rapids
import java.nio.charset.Charset
import java.text.DecimalFormatSymbols
import java.util.{Locale, Optional}
import scala.collection.mutable.ArrayBuffer
import ai.rapids.cudf.{BinaryOp, BinaryOperable, CaptureGroups, ColumnVector, ColumnView, DType, PadSide, RegexProgram, RoundMode, Scalar}
import com.nvidia.spark.rapids._
import com.nvidia.spark.rapids.Arm._
import com.nvidia.spark.rapids.RapidsPluginImplicits._
import com.nvidia.spark.rapids.jni.CastStrings
import com.nvidia.spark.rapids.jni.GpuSubstringIndexUtils
import com.nvidia.spark.rapids.jni.RegexRewriteUtils
import com.nvidia.spark.rapids.shims.{ShimExpression, SparkShimImpl}
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.vectorized.ColumnarBatch
import org.apache.spark.unsafe.types.UTF8String
abstract class GpuUnaryString2StringExpression extends GpuUnaryExpression with ExpectsInputTypes {
override def inputTypes: Seq[AbstractDataType] = Seq(StringType)
override def dataType: DataType = StringType
}
case class GpuUpper(child: Expression) extends GpuUnaryString2StringExpression {
override def toString: String = s"upper($child)"
override def doColumnar(input: GpuColumnVector): ColumnVector =
input.getBase.upper()
}
case class GpuLower(child: Expression) extends GpuUnaryString2StringExpression {
override def toString: String = s"lower($child)"
override def doColumnar(input: GpuColumnVector): ColumnVector =
input.getBase.lower()
}
case class GpuLength(child: Expression) extends GpuUnaryExpression with ExpectsInputTypes {
override def dataType: DataType = IntegerType
override def inputTypes: Seq[AbstractDataType] = Seq(StringType)
override def toString: String = s"length($child)"
override def doColumnar(input: GpuColumnVector): ColumnVector =
input.getBase.getCharLengths()
}
case class GpuBitLength(child: Expression) extends GpuUnaryExpression with ExpectsInputTypes {
override def dataType: DataType = IntegerType
override def inputTypes: Seq[AbstractDataType] = Seq(StringType)
override def toString: String = s"bit_length($child)"
override def doColumnar(input: GpuColumnVector): ColumnVector = {
withResource(input.getBase.getByteCount) { byteCnt =>
// bit count = byte count * 8
withResource(GpuScalar.from(3, IntegerType)) { factor =>
byteCnt.binaryOp(BinaryOp.SHIFT_LEFT, factor, DType.INT32)
}
}
}
}
case class GpuOctetLength(child: Expression) extends GpuUnaryExpression with ExpectsInputTypes {
override def dataType: DataType = IntegerType
override def inputTypes: Seq[AbstractDataType] = Seq(StringType)
override def toString: String = s"octet_length($child)"
override def doColumnar(input: GpuColumnVector): ColumnVector =
input.getBase.getByteCount
}
case class GpuStringLocate(substr: Expression, col: Expression, start: Expression)
extends GpuTernaryExpressionArgsScalarAnyScalar
with ImplicitCastInputTypes {
override def dataType: DataType = IntegerType
override def inputTypes: Seq[DataType] = Seq(StringType, StringType, IntegerType)
override def first: Expression = substr
override def second: Expression = col
override def third: Expression = start
def this(substr: Expression, col: Expression) = {
this(substr, col, GpuLiteral(1, IntegerType))
}
override def doColumnar(val0: GpuScalar, val1: GpuColumnVector,
val2: GpuScalar): ColumnVector = {
if (!val2.isValid) {
withResource(Scalar.fromInt(0)) { zeroScalar =>
ColumnVector.fromScalar(zeroScalar, val1.getRowCount().toInt)
}
} else if (!val0.isValid) {
//if null substring // or null column? <-- needs to be looked for/tested
GpuColumnVector.columnVectorFromNull(val1.getRowCount().toInt, IntegerType)
} else {
val val2Int = val2.getValue.asInstanceOf[Int]
val val0Str = val0.getValue.asInstanceOf[UTF8String]
if (val2Int < 1 || val0Str.numChars() == 0) {
withResource(val1.getBase.isNotNull()) { isNotNullColumn =>
withResource(Scalar.fromNull(DType.INT32)) { nullScalar =>
if (val2Int >= 1) {
withResource(Scalar.fromInt(1)) { sv1 =>
isNotNullColumn.ifElse(sv1, nullScalar)
}
} else {
withResource(Scalar.fromInt(0)) { sv0 =>
isNotNullColumn.ifElse(sv0, nullScalar)
}
}
}
}
} else {
withResource(val1.getBase.stringLocate(val0.getBase, val2Int - 1, -1)) {
skewedResult =>
withResource(Scalar.fromInt(1)) { sv1 =>
skewedResult.add(sv1)
}
}
}
}
}
override def doColumnar(numRows: Int, val0: GpuScalar, val1: GpuScalar,
val2: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(val1, numRows, col.dataType)) { val1Col =>
doColumnar(val0, val1Col, val2)
}
}
}
case class GpuStartsWith(left: Expression, right: Expression)
extends GpuBinaryExpressionArgsAnyScalar
with Predicate
with ImplicitCastInputTypes
with NullIntolerant {
override def inputTypes: Seq[DataType] = Seq(StringType)
override def sql: String = {
val inputSQL = left.sql
val listSQL = right.sql
s"($inputSQL STARTSWITH ($listSQL))"
}
override def toString: String = s"gpustartswith($left, $right)"
def doColumnar(lhs: GpuColumnVector, rhs: GpuScalar): ColumnVector =
lhs.getBase.startsWith(rhs.getBase)
override def doColumnar(numRows: Int, lhs: GpuScalar, rhs: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(lhs, numRows, left.dataType)) { expandedLhs =>
doColumnar(expandedLhs, rhs)
}
}
}
case class GpuEndsWith(left: Expression, right: Expression)
extends GpuBinaryExpressionArgsAnyScalar
with Predicate
with ImplicitCastInputTypes
with NullIntolerant {
override def inputTypes: Seq[DataType] = Seq(StringType)
override def sql: String = {
val inputSQL = left.sql
val listSQL = right.sql
s"($inputSQL ENDSWITH ($listSQL))"
}
override def toString: String = s"gpuendswith($left, $right)"
def doColumnar(lhs: GpuColumnVector, rhs: GpuScalar): ColumnVector =
lhs.getBase.endsWith(rhs.getBase)
override def doColumnar(numRows: Int, lhs: GpuScalar, rhs: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(lhs, numRows, left.dataType)) { expandedLhs =>
doColumnar(expandedLhs, rhs)
}
}
}
case class GpuStringTrim(column: Expression, trimParameters: Option[Expression] = None)
extends GpuString2TrimExpression with ImplicitCastInputTypes {
override def srcStr: Expression = column
override def trimStr:Option[Expression] = trimParameters
def this(trimParameters: Expression, column: Expression) =
this(column, Option(trimParameters))
def this(column: Expression) = this(column, None)
override protected def direction: String = "BOTH"
val trimMethod = "gpuTrim"
override def strippedColumnVector(column: GpuColumnVector, t: Scalar): GpuColumnVector =
if (column.getBase.getData == null) {
GpuColumnVector.from(column.getBase.incRefCount, dataType)
} else {
GpuColumnVector.from(column.getBase.strip(t), dataType)
}
}
case class GpuStringTrimLeft(column: Expression, trimParameters: Option[Expression] = None)
extends GpuString2TrimExpression with ImplicitCastInputTypes {
override def srcStr: Expression = column
override def trimStr:Option[Expression] = trimParameters
def this(trimParameters: Expression, column: Expression) =
this(column, Option(trimParameters))
def this(column: Expression) = this(column, None)
override protected def direction: String = "LEADING"
val trimMethod = "gpuTrimLeft"
override def strippedColumnVector(column: GpuColumnVector, t: Scalar): GpuColumnVector =
if (column.getBase.getData == null) {
GpuColumnVector.from(column.getBase.incRefCount, dataType)
} else {
GpuColumnVector.from(column.getBase.lstrip(t), dataType)
}
}
case class GpuStringTrimRight(column: Expression, trimParameters: Option[Expression] = None)
extends GpuString2TrimExpression with ImplicitCastInputTypes {
override def srcStr: Expression = column
override def trimStr:Option[Expression] = trimParameters
def this(trimParameters: Expression, column: Expression) =
this(column, Option(trimParameters))
def this(column: Expression) = this(column, None)
override protected def direction: String = "TRAILING"
val trimMethod = "gpuTrimRight"
override def strippedColumnVector(column:GpuColumnVector, t:Scalar): GpuColumnVector =
if (column.getBase.getData == null) {
GpuColumnVector.from(column.getBase.incRefCount, dataType)
} else {
GpuColumnVector.from(column.getBase.rstrip(t), dataType)
}
}
case class GpuConcatWs(children: Seq[Expression])
extends GpuExpression with ShimExpression with ImplicitCastInputTypes {
override def dataType: DataType = StringType
override def nullable: Boolean = children.head.nullable
override def foldable: Boolean = children.forall(_.foldable)
/** The 1st child (separator) is str, and rest are either str or array of str. */
override def inputTypes: Seq[AbstractDataType] = {
val arrayOrStr = TypeCollection(ArrayType(StringType), StringType)
StringType +: Seq.fill(children.size - 1)(arrayOrStr)
}
private def concatArrayCol(colOrScalarSep: Any,
cv: ColumnView): GpuColumnVector = {
colOrScalarSep match {
case sepScalar: GpuScalar =>
withResource(GpuScalar.from("", StringType)) { emptyStrScalar =>
GpuColumnVector.from(cv.stringConcatenateListElements(sepScalar.getBase, emptyStrScalar,
false, false), dataType)
}
case sepVec: GpuColumnVector =>
GpuColumnVector.from(cv.stringConcatenateListElements(sepVec.getBase), dataType)
}
}
private def processSingleColScalarSep(cv: ColumnVector): GpuColumnVector = {
// single column with scalar separator just replace any nulls with empty string
withResource(Scalar.fromString("")) { emptyStrScalar =>
GpuColumnVector.from(cv.replaceNulls(emptyStrScalar), dataType)
}
}
private def stringConcatSeparatorScalar(columns: ArrayBuffer[ColumnVector],
sep: GpuScalar): GpuColumnVector = {
withResource(Scalar.fromString("")) { emptyStrScalar =>
GpuColumnVector.from(ColumnVector.stringConcatenate(sep.getBase, emptyStrScalar,
columns.toArray[ColumnView], false), dataType)
}
}
private def stringConcatSeparatorVector(columns: ArrayBuffer[ColumnVector],
sep: GpuColumnVector): GpuColumnVector = {
// GpuOverrides doesn't allow only specifying a separator, you have to specify at
// least one value column
GpuColumnVector.from(ColumnVector.stringConcatenate(columns.toArray[ColumnView],
sep.getBase), dataType)
}
private def resolveColumnVectorAndConcatArrayCols(
expr: Expression,
numRows: Int,
colOrScalarSep: Any,
batch: ColumnarBatch): GpuColumnVector = {
withResourceIfAllowed(expr.columnarEvalAny(batch)) {
case vector: GpuColumnVector =>
vector.dataType() match {
case ArrayType(_: StringType, _) => concatArrayCol(colOrScalarSep, vector.getBase)
case _ => vector.incRefCount()
}
case s: GpuScalar =>
s.dataType match {
case ArrayType(_: StringType, _) =>
// we have to first concatenate any array types
withResource(GpuColumnVector.from(s, numRows, s.dataType).getBase) { cv =>
concatArrayCol(colOrScalarSep, cv)
}
case _ => GpuColumnVector.from(s, numRows, s.dataType)
}
case other =>
throw new IllegalArgumentException(s"Cannot resolve a ColumnVector from the value:" +
s" $other. Please convert it to a GpuScalar or a GpuColumnVector before returning.")
}
}
private def checkScalarSeparatorNull(colOrScalarSep: Any,
numRows: Int): Option[GpuColumnVector] = {
colOrScalarSep match {
case sepScalar: GpuScalar if (!sepScalar.getBase.isValid()) =>
// if null scalar separator just return a column of all nulls
Some(GpuColumnVector.from(sepScalar, numRows, dataType))
case _ =>
None
}
}
override def columnarEval(batch: ColumnarBatch): GpuColumnVector = {
val numRows = batch.numRows()
withResourceIfAllowed(children.head.columnarEvalAny(batch)) { colOrScalarSep =>
// check for null scalar separator
checkScalarSeparatorNull(colOrScalarSep, numRows).getOrElse {
withResource(ArrayBuffer.empty[ColumnVector]) { columns =>
columns ++= children.tail.map {
resolveColumnVectorAndConcatArrayCols(_, numRows, colOrScalarSep, batch).getBase
}
colOrScalarSep match {
case sepScalar: GpuScalar =>
if (columns.size == 1) {
processSingleColScalarSep(columns.head)
} else {
stringConcatSeparatorScalar(columns, sepScalar)
}
case sepVec: GpuColumnVector => stringConcatSeparatorVector(columns, sepVec)
}
}
}
}
}
}
case class GpuContains(left: Expression, right: Expression)
extends GpuBinaryExpressionArgsAnyScalar
with Predicate
with ImplicitCastInputTypes
with NullIntolerant {
override def inputTypes: Seq[DataType] = Seq(StringType)
override def sql: String = {
val inputSQL = left.sql
val listSQL = right.sql
s"($inputSQL CONTAINS ($listSQL))"
}
override def toString: String = s"gpucontains($left, $right)"
def doColumnar(lhs: GpuColumnVector, rhs: GpuScalar): ColumnVector =
lhs.getBase.stringContains(rhs.getBase)
override def doColumnar(numRows: Int, lhs: GpuScalar, rhs: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(lhs, numRows, left.dataType)) { expandedLhs =>
doColumnar(expandedLhs, rhs)
}
}
}
case class GpuSubstring(str: Expression, pos: Expression, len: Expression)
extends GpuTernaryExpression with ImplicitCastInputTypes with NullIntolerant {
override def dataType: DataType = str.dataType
override def inputTypes: Seq[AbstractDataType] =
Seq(TypeCollection(StringType, BinaryType), IntegerType, IntegerType)
override def first: Expression = str
override def second: Expression = pos
override def third: Expression = len
def this(str: Expression, pos: Expression) = {
this(str, pos, GpuLiteral(Integer.MAX_VALUE, IntegerType))
}
private[this] def computeStarts(strs: ColumnView, poses: ColumnView): ColumnVector = {
// CPU:
// start = (pos < 0) ? pos + str_size : ((pos > 0) ? pos - 1 : 0)
// cudf `substring(column, column, column)` treats negative start always as 0, so
// need to do the similar calculation as CPU here.
// 1) pos + str_size
val negConvertedPoses = withResource(strs.getCharLengths) { strSizes =>
poses.add(strSizes, DType.INT32)
}
withResource(negConvertedPoses) { _ =>
withResource(Scalar.fromInt(0)) { zero =>
// 2) (pos > 0) ? pos - 1 : 0
val subOnePoses = withResource(Scalar.fromInt(1)) { one =>
poses.sub(one, DType.INT32)
}
val zeroBasedPoses = withResource(subOnePoses) { _ =>
withResource(poses.greaterThan(zero)) { posPosFlags =>
// Use "poses" here instead of "zero" as the false path to keep the nulls,
// since "ifElse" will erase the null mask of "poses".
posPosFlags.ifElse(subOnePoses, poses)
}
}
withResource(zeroBasedPoses) { _ =>
withResource(poses.lessThan(zero)) { negPosFlags =>
negPosFlags.ifElse(negConvertedPoses, zeroBasedPoses)
}
}
}
}
}
private[this] def computeEnds(starts: BinaryOperable, lens: BinaryOperable): ColumnVector = {
// CPU:
// end = start + length
// , along with integer overflow check
val endLongCol = withResource(starts.add(lens, DType.INT64)) { endColAsLong =>
// If (end < 0), end = 0, let cudf return empty string.
// If (end > Int.MaxValue), end = Int.MaxValue, let cudf return string
// from start until the string end.
// To align with the CPU's behavior.
withResource(Scalar.fromLong(0L)) { zero =>
withResource(Scalar.fromLong(Int.MaxValue.toLong)) { maxInt =>
endColAsLong.clamp(zero, maxInt)
}
}
}
withResource(endLongCol) { _ =>
endLongCol.castTo(DType.INT32)
}
}
private[this] def substringColumn(strs: ColumnView, starts: ColumnView,
ends: ColumnView): ColumnVector = {
// cudf does not allow nulls in starts and ends.
val noNullStarts = new ColumnView(starts.getType, starts.getRowCount, Optional.of(0L),
starts.getData, null)
withResource(noNullStarts) { _ =>
val noNullEnds = new ColumnView(ends.getType, ends.getRowCount, Optional.of(0L),
ends.getData, null)
withResource(noNullEnds) { _ =>
// Spark returns null if any of (str, pos, len) is null, and `ends`'s null mask
// should already cover pos and len.
withResource(strs.mergeAndSetValidity(BinaryOp.BITWISE_AND, strs, ends)) { rets =>
rets.substring(noNullStarts, noNullEnds)
}
}
}
}
override def doColumnar(strCol: GpuColumnVector, posCol: GpuColumnVector,
lenCol: GpuColumnVector): ColumnVector = {
val strs = strCol.getBase
val poses = posCol.getBase
val lens = lenCol.getBase
withResource(computeStarts(strs, poses)) { starts =>
withResource(computeEnds(starts, lens)) { ends =>
substringColumn(strs, starts, ends)
}
}
}
override def doColumnar(strS: GpuScalar, posCol: GpuColumnVector,
lenCol: GpuColumnVector): ColumnVector = {
val numRows = posCol.getRowCount.toInt
withResource(GpuColumnVector.from(strS, numRows, strS.dataType)) { strCol =>
doColumnar(strCol, posCol, lenCol)
}
}
override def doColumnar(strCol: GpuColumnVector, posS: GpuScalar,
lenCol: GpuColumnVector): ColumnVector = {
val strs = strCol.getBase
val lens = lenCol.getBase
val pos = posS.getValue.asInstanceOf[Int]
// CPU:
// start = (pos < 0) ? pos + str_size : ((pos > 0) ? pos - 1 : 0)
val starts = if (pos < 0) {
withResource(strs.getCharLengths) { strSizes =>
withResource(Scalar.fromInt(pos)) { posS =>
posS.add(strSizes, DType.INT32)
}
}
} else { // pos >= 0
val start = if (pos > 0) pos - 1 else 0
withResource(Scalar.fromInt(start)) { startS =>
ColumnVector.fromScalar(startS, strs.getRowCount.toInt)
}
}
withResource(starts) { _ =>
withResource(computeEnds(starts, lens)) { ends =>
substringColumn(strs, starts, ends)
}
}
}
override def doColumnar (strS: GpuScalar, posS: GpuScalar,
lenCol: GpuColumnVector): ColumnVector = {
val strValue = strS.getValue.asInstanceOf[UTF8String]
val pos = posS.getValue.asInstanceOf[Int]
val lens = lenCol.getBase
val numRows = lenCol.getRowCount.toInt
// CPU:
// start = (pos < 0) ? pos + str_size : ((pos > 0) ? pos - 1 : 0)
val start = if (pos < 0) {
pos + strValue.numChars()
} else if (pos > 0) {
pos - 1
} else 0
val starts = withResource(Scalar.fromInt(start)) { startS =>
ColumnVector.fromScalar(startS, numRows)
}
withResource(starts) { _ =>
withResource(computeEnds(starts, lens)) { ends =>
withResource(ColumnVector.fromScalar(strS.getBase, numRows)) { strs =>
substringColumn(strs, starts, ends)
}
}
}
}
override def doColumnar(strCol: GpuColumnVector, posCol: GpuColumnVector,
lenS: GpuScalar): ColumnVector = {
val strs = strCol.getBase
val poses = posCol.getBase
val numRows = strCol.getRowCount.toInt
withResource(computeStarts(strs, poses)) { starts =>
val ends = withResource(ColumnVector.fromScalar(lenS.getBase, numRows)) { lens =>
computeEnds(starts, lens)
}
withResource(ends) { _ =>
substringColumn(strs, starts, ends)
}
}
}
override def doColumnar(strS: GpuScalar, posCol: GpuColumnVector,
lenS: GpuScalar): ColumnVector = {
val numRows = posCol.getRowCount.toInt
withResource(GpuColumnVector.from(strS, numRows, strS.dataType)) { strCol =>
doColumnar(strCol, posCol, lenS)
}
}
override def doColumnar(strCol: GpuColumnVector, posS: GpuScalar,
lenS: GpuScalar): ColumnVector = {
val strs = strCol.getBase
val pos = posS.getValue.asInstanceOf[Int]
val len = lenS.getValue.asInstanceOf[Int]
val (start, endOpt) = if (len <= 0) {
// Spark returns empty string if length is negative or zero
(0, Some(0))
} else if (pos > 0) {
// 1-based index, convert to 0-based index
val head = pos - 1
val tail = if (head.toLong + len > Int.MaxValue) Int.MaxValue else head + len
(head, Some(tail))
} else if (pos == 0) {
// 0-based index, calculate substring from 0 to length
(0, Some(len))
} else if (pos + len < 0) {
// Drop the last "abs(substringPos + substringLen)" chars.
// e.g.
// >> substring("abc", -3, 1)
// >> "a" // dropping the last 2 [= abs(-3+1)] chars.
// `pos + len` does not overflow as `pos < 0 && len > 0` here.
(pos, Some(pos + len))
} else { // pos + len >= 0
// Read from start until the end.
// e.g. `substring("abc", -3, 4)` outputs "abc".
(pos, None)
}
endOpt.map(strs.substring(start, _)).getOrElse(strs.substring(start))
}
override def doColumnar(numRows: Int, strS: GpuScalar, posS: GpuScalar,
lenS: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(strS, numRows, strS.dataType)) { strCol =>
doColumnar(strCol, posS, lenS)
}
}
}
case class GpuInitCap(child: Expression) extends GpuUnaryExpression with ImplicitCastInputTypes {
override def inputTypes: Seq[DataType] = Seq(StringType)
override def dataType: DataType = StringType
override protected def doColumnar(input: GpuColumnVector): ColumnVector =
withResource(Scalar.fromString(" ")) { space =>
// Spark only sees the space character as a word deliminator.
input.getBase.capitalize(space)
}
}
case class GpuStringRepeat(input: Expression, repeatTimes: Expression)
extends GpuBinaryExpression with ImplicitCastInputTypes with NullIntolerant {
override def left: Expression = input
override def right: Expression = repeatTimes
override def dataType: DataType = input.dataType
override def inputTypes: Seq[AbstractDataType] = Seq(StringType, IntegerType)
def doColumnar(input: GpuScalar, repeatTimes: GpuColumnVector): ColumnVector = {
assert(input.dataType == StringType)
withResource(GpuColumnVector.from(input, repeatTimes.getRowCount.asInstanceOf[Int],
input.dataType)) {
replicatedInput => doColumnar(replicatedInput, repeatTimes)
}
}
def doColumnar(input: GpuColumnVector, repeatTimes: GpuColumnVector): ColumnVector = {
input.getBase.repeatStrings(repeatTimes.getBase)
}
def doColumnar(input: GpuColumnVector, repeatTimes: GpuScalar): ColumnVector = {
if (!repeatTimes.isValid) {
// If the input scala repeatTimes is invalid, the results should be all nulls.
withResource(Scalar.fromNull(DType.STRING)) {
nullString => ColumnVector.fromScalar(nullString, input.getRowCount.asInstanceOf[Int])
}
} else {
assert(repeatTimes.dataType == IntegerType)
val repeatTimesVal = repeatTimes.getBase.getInt
// Get the input size to check for overflow for the output.
// Note that this is not an accurate check since the total buffer size of the input
// strings column may be larger than the total length of strings that will be repeated in
// this function.
val inputBufferSize: Long = Option(input.getBase.getData).map(_.getLength).getOrElse(0)
if (repeatTimesVal > 0 && inputBufferSize > Int.MaxValue / repeatTimesVal) {
throw new RuntimeException("Output strings have total size exceed maximum allowed size")
}
// Finally repeat the strings.
input.getBase.repeatStrings(repeatTimesVal)
}
}
def doColumnar(numRows: Int, input: GpuScalar, repeatTimes: GpuScalar): ColumnVector = {
assert(input.dataType == StringType)
if (!repeatTimes.isValid) {
// If the input scala repeatTimes is invalid, the results should be all nulls.
withResource(Scalar.fromNull(DType.STRING)) {
nullString => ColumnVector.fromScalar(nullString, numRows)
}
} else {
assert(repeatTimes.dataType == IntegerType)
val repeatTimesVal = repeatTimes.getBase.getInt
withResource(input.getBase.repeatString(repeatTimesVal)) {
repeatedString => ColumnVector.fromScalar(repeatedString, numRows)
}
}
}
}
trait HasGpuStringReplace {
def doStringReplace(
strExpr: GpuColumnVector,
searchExpr: GpuScalar,
replaceExpr: GpuScalar): ColumnVector = {
// When search or replace string is null, return all nulls like the CPU does.
if (!searchExpr.isValid || !replaceExpr.isValid) {
GpuColumnVector.columnVectorFromNull(strExpr.getRowCount.toInt, StringType)
} else if (searchExpr.getValue.asInstanceOf[UTF8String].numChars() == 0) {
// Return original string if search string is empty
strExpr.getBase.asStrings()
} else {
strExpr.getBase.stringReplace(searchExpr.getBase, replaceExpr.getBase)
}
}
def doStringReplaceMulti(
strExpr: GpuColumnVector,
search: Seq[String],
replacement: String): ColumnVector = {
withResource(ColumnVector.fromStrings(search: _*)) { targets =>
withResource(ColumnVector.fromStrings(replacement)) { repls =>
strExpr.getBase.stringReplace(targets, repls)
}
}
}
}
case class GpuStringReplace(
srcExpr: Expression,
searchExpr: Expression,
replaceExpr: Expression)
extends GpuTernaryExpressionArgsAnyScalarScalar
with ImplicitCastInputTypes
with HasGpuStringReplace {
override def dataType: DataType = srcExpr.dataType
override def inputTypes: Seq[DataType] = Seq(StringType, StringType, StringType)
override def first: Expression = srcExpr
override def second: Expression = searchExpr
override def third: Expression = replaceExpr
def this(srcExpr: Expression, searchExpr: Expression) = {
this(srcExpr, searchExpr, GpuLiteral("", StringType))
}
override def doColumnar(
strExpr: GpuColumnVector,
searchExpr: GpuScalar,
replaceExpr: GpuScalar): ColumnVector = {
doStringReplace(strExpr, searchExpr, replaceExpr)
}
override def doColumnar(
numRows: Int,
strExpr: GpuScalar,
searchExpr: GpuScalar,
replaceExpr: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(strExpr, numRows, srcExpr.dataType)) { strExprCol =>
doColumnar(strExprCol, searchExpr, replaceExpr)
}
}
}
case class GpuStringTranslate(
srcExpr: Expression,
fromExpr: Expression,
toExpr: Expression)
extends GpuTernaryExpressionArgsAnyScalarScalar
with ImplicitCastInputTypes {
override def dataType: DataType = srcExpr.dataType
override def inputTypes: Seq[DataType] = Seq(StringType, StringType, StringType)
override def first: Expression = srcExpr
override def second: Expression = fromExpr
override def third: Expression = toExpr
private def buildLists(fromExpr: GpuScalar, toExpr: GpuScalar): (List[String], List[String]) = {
val fromString = fromExpr.getValue.asInstanceOf[UTF8String].toString
val toString = toExpr.getValue.asInstanceOf[UTF8String].toString
var fromCharsArray = Array[String]()
var toCharsArray = Array[String]()
var i = 0
var j = 0
while (i < fromString.length) {
val replaceStr = if (j < toString.length) {
val repCharCount = Character.charCount(toString.codePointAt(j))
val repStr = toString.substring(j, j + repCharCount)
j += repCharCount
repStr
} else {
""
}
val matchCharCount = Character.charCount(fromString.codePointAt(i))
val matchStr = fromString.substring(i, i + matchCharCount)
i += matchCharCount
fromCharsArray :+= matchStr
toCharsArray :+= replaceStr
}
(fromCharsArray.toList, toCharsArray.toList)
}
override def doColumnar(
strExpr: GpuColumnVector,
fromExpr: GpuScalar,
toExpr: GpuScalar): ColumnVector = {
// When from or to string is null, return all nulls like the CPU does.
if (!fromExpr.isValid || !toExpr.isValid) {
GpuColumnVector.columnVectorFromNull(strExpr.getRowCount.toInt, StringType)
} else if (fromExpr.getValue.asInstanceOf[UTF8String].numChars() == 0) {
// Return original string if search string is empty
strExpr.getBase.incRefCount()
} else {
val (fromStringList, toStringList) = buildLists(fromExpr, toExpr)
withResource(ColumnVector.fromStrings(fromStringList: _*)) { fromStringCol =>
withResource(ColumnVector.fromStrings(toStringList: _*)) { toStringCol =>
strExpr.getBase.stringReplace(fromStringCol, toStringCol)
}
}
}
}
override def doColumnar(numRows: Int, val0: GpuScalar, val1: GpuScalar,
val2: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(val0, numRows, srcExpr.dataType)) { val0Col =>
doColumnar(val0Col, val1, val2)
}
}
}
object CudfRegexp {
val escapeForCudfCharSet = Seq('^', '-', ']')
def notCharSet(c: Char): String = c match {
case '\n' => "(?:.|\r)"
case '\r' => "(?:.|\n)"
case chr if escapeForCudfCharSet.contains(chr) => "(?:[^\\" + chr + "]|\r|\n)"
case chr => "(?:[^" + chr + "]|\r|\n)"
}
val escapeForCudf = Seq('[', '^', '$', '.', '|', '?', '*','+', '(', ')', '\\', '{', '}')
def cudfQuote(c: Character): String = c match {
case chr if escapeForCudf.contains(chr) => "\\" + chr
case chr => Character.toString(chr)
}
}
case class GpuLike(left: Expression, right: Expression, escapeChar: Char)
extends GpuBinaryExpressionArgsAnyScalar
with ImplicitCastInputTypes
with NullIntolerant {
def this(left: Expression, right: Expression) = this(left, right, '\\')
override def toString: String = escapeChar match {
case '\\' => s"$left gpulike $right"
case c => s"$left gpulike $right ESCAPE '$c'"
}
override def doColumnar(lhs: GpuColumnVector, rhs: GpuScalar): ColumnVector = {
withResource(Scalar.fromString(Character.toString(escapeChar))) { escapeScalar =>
lhs.getBase.like(rhs.getBase, escapeScalar)
}
}
override def doColumnar(numRows: Int, lhs: GpuScalar, rhs: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(lhs, numRows, left.dataType)) { expandedLhs =>
doColumnar(expandedLhs, rhs)
}
}
override def inputTypes: Seq[AbstractDataType] = Seq(StringType, StringType)
override def dataType: DataType = BooleanType
}
object GpuRegExpUtils {
private def parseAST(pattern: String): RegexAST = {
new RegexParser(pattern).parse()
}
/**
* Convert symbols of back-references if input string contains any.
* In spark's regex rule, there are two patterns of back-references:
* \group_index and \$group_index
* This method transforms above two patterns into cuDF pattern \${group_index}, except they are
* preceded by escape character.
*
* @param rep replacement string
* @return A pair consists of a boolean indicating whether containing any backref and the
* converted replacement.
*/
def backrefConversion(rep: String): (Boolean, String) = {
val b = new StringBuilder
var i = 0
while (i < rep.length) {
// match $group_index or \group_index
if (Seq('$', '\\').contains(rep.charAt(i))
&& i + 1 < rep.length && rep.charAt(i + 1).isDigit) {
b.append("${")
var j = i + 1
do {
b.append(rep.charAt(j))
j += 1
} while (j < rep.length && rep.charAt(j).isDigit)
b.append("}")
i = j
} else if (rep.charAt(i) == '\\' && i + 1 < rep.length) {
// skip potential \$group_index or \\group_index
b.append('\\').append(rep.charAt(i + 1))
i += 2
} else {
b.append(rep.charAt(i))
i += 1
}
}
val converted = b.toString
!rep.equals(converted) -> converted
}
/**
* We need to remove escape characters in the regexp_replace
* replacement string before passing to cuDF.
*/
def unescapeReplaceString(s: String): String = {
val b = new StringBuilder
var i = 0
while (i < s.length) {
if (s.charAt(i) == '\\' && i+1 < s.length) {
i += 1
}
b.append(s.charAt(i))
i += 1
}
b.toString
}
def tagForRegExpEnabled(meta: ExprMeta[_]): Unit = {
if (!meta.conf.isRegExpEnabled) {
meta.willNotWorkOnGpu(s"regular expression support is disabled. " +
s"Set ${RapidsConf.ENABLE_REGEXP}=true to enable it")
}
Charset.defaultCharset().name() match {
case "UTF-8" =>
// supported
case _ =>
meta.willNotWorkOnGpu(s"regular expression support is disabled because the GPU only " +
"supports the UTF-8 charset when using regular expressions")
}
}
def validateRegExpComplexity(meta: ExprMeta[_], regex: RegexAST): Unit = {
if(!RegexComplexityEstimator.isValid(meta.conf, regex)) {
meta.willNotWorkOnGpu(s"estimated memory needed for regular expression exceeds the maximum." +
s" Set ${RapidsConf.REGEXP_MAX_STATE_MEMORY_BYTES} to change it.")
}
}
/**
* Recursively check if pattern contains only zero-match repetitions
* ?, *, {0,}, or {0,n} or any combination of them.
*/
def isEmptyRepetition(pattern: String): Boolean = {
def isASTEmptyRepetition(regex: RegexAST): Boolean = {
regex match {
case RegexRepetition(_, term) => term match {
case SimpleQuantifier('*') | SimpleQuantifier('?') => true
case QuantifierFixedLength(0) => true
case QuantifierVariableLength(0, _) => true
case _ => false
}
case RegexGroup(_, term, _) =>
isASTEmptyRepetition(term)
case RegexSequence(parts) =>
parts.forall(isASTEmptyRepetition)
// cuDF does not support repetitions adjacent to a choice (eg. "a*|a"), but if
// we did, we would need to add a `case RegexChoice()` here
case _ => false
}
}
parseAST(pattern) match {
case RegexSequence(parts) if parts.lastOption.contains(RegexChar('$')) =>
// handle pattern ".*$"
isASTEmptyRepetition(RegexSequence(parts.dropRight(1)))
case other => isASTEmptyRepetition(other)
}
}
/**
* Returns the number of groups in regexp
* (includes both capturing and non-capturing groups)
*/
def countGroups(pattern: String): Int = {
def countGroups(regexp: RegexAST): Int = {
regexp match {
case RegexGroup(_, term, _) => 1 + countGroups(term)
case other => other.children().map(countGroups).sum
}
}
countGroups(parseAST(pattern))
}
def getChoicesFromRegex(regex: RegexAST): Option[Seq[String]] = {
regex match {
case RegexGroup(_, t, None) =>
getChoicesFromRegex(t)
case RegexChoice(a, b) =>
getChoicesFromRegex(a) match {
case Some(la) =>
getChoicesFromRegex(b) match {
case Some(lb) => Some(la ++ lb)
case _ => None
}
case _ => None
}
case RegexSequence(parts) =>
if (GpuOverrides.isSupportedStringReplacePattern(regex.toRegexString)) {
Some(Seq(regex.toRegexString))
} else {
parts.foldLeft(Some(Seq[String]()): Option[Seq[String]]) { (m: Option[Seq[String]], r) =>
getChoicesFromRegex(r) match {
case Some(l) => m.map(_ ++ l)
case _ => None
}
}
}
case _ =>
if (GpuOverrides.isSupportedStringReplacePattern(regex.toRegexString)) {
Some(Seq(regex.toRegexString))
} else {
None
}
}
}
}
class GpuRLikeMeta(
expr: RLike,
conf: RapidsConf,
parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule) extends BinaryExprMeta[RLike](expr, conf, parent, rule) {
import RegexOptimizationType._
private var pattern: Option[String] = None
private var rewriteOptimizationType: RegexOptimizationType = NoOptimization
override def tagExprForGpu(): Unit = {
GpuRegExpUtils.tagForRegExpEnabled(this)
expr.right match {
case Literal(str: UTF8String, DataTypes.StringType) if str != null =>
try {
// verify that we support this regex and can transpile it to cuDF format
val originalPattern = str.toString
val regexAst = new RegexParser(originalPattern).parse()
if (conf.isRlikeRegexRewriteEnabled) {
rewriteOptimizationType = RegexRewrite.matchSimplePattern(regexAst)
}
val (transpiledAST, _) = new CudfRegexTranspiler(RegexFindMode)
.getTranspiledAST(regexAst, None, None)
GpuRegExpUtils.validateRegExpComplexity(this, transpiledAST)
pattern = Some(transpiledAST.toRegexString)
} catch {
case e: RegexUnsupportedException =>
willNotWorkOnGpu(e.getMessage)
}
case _ =>
willNotWorkOnGpu(s"only non-null literal strings are supported on GPU")
}
}
override def convertToGpu(lhs: Expression, rhs: Expression): GpuExpression = {
rewriteOptimizationType match {
case NoOptimization => {
val patternStr = pattern.getOrElse(throw new IllegalStateException(
"Expression has not been tagged with cuDF regex pattern"))
GpuRLike(lhs, rhs, patternStr)
}
case StartsWith(s) => GpuStartsWith(lhs, GpuLiteral(s, StringType))
case Contains(s) => GpuContains(lhs, GpuLiteral(s, StringType))
case MultipleContains(ls) => GpuMultipleContains(lhs, ls)
case PrefixRange(s, length, start, end) =>
GpuLiteralRangePattern(lhs, GpuLiteral(s, StringType), length, start, end)
case _ => throw new IllegalStateException("Unexpected optimization type")
}
}
}
case class GpuRLike(left: Expression, right: Expression, pattern: String)
extends GpuBinaryExpressionArgsAnyScalar
with ImplicitCastInputTypes
with NullIntolerant {
override def toString: String = s"$left gpurlike $right"
override def doColumnar(lhs: GpuColumnVector, rhs: GpuScalar): ColumnVector = {
lhs.getBase.containsRe(new RegexProgram(pattern, CaptureGroups.NON_CAPTURE))
}
override def doColumnar(numRows: Int, lhs: GpuScalar, rhs: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(lhs, numRows, left.dataType)) { expandedLhs =>
doColumnar(expandedLhs, rhs)
}
}
override def inputTypes: Seq[AbstractDataType] = Seq(StringType, StringType)
override def dataType: DataType = BooleanType
}
case class GpuMultipleContains(input: Expression, searchList: Seq[String])
extends GpuUnaryExpression with ImplicitCastInputTypes with NullIntolerant {
override def dataType: DataType = BooleanType
override def child: Expression = input
override def inputTypes: Seq[AbstractDataType] = Seq(StringType)
override def doColumnar(input: GpuColumnVector): ColumnVector = {
assert(searchList.length > 1)
val accInit = withResource(Scalar.fromString(searchList.head)) { searchScalar =>
input.getBase.stringContains(searchScalar)
}
searchList.tail.foldLeft(accInit) { (acc, search) =>
val containsSearch = withResource(Scalar.fromString(search)) { searchScalar =>
input.getBase.stringContains(searchScalar)
}
withResource(acc) { _ =>
withResource(containsSearch) { _ =>
acc.or(containsSearch)
}
}
}
}
}
case class GpuLiteralRangePattern(left: Expression, right: Expression,
length: Int, start: Int, end: Int)
extends GpuBinaryExpressionArgsAnyScalar with ImplicitCastInputTypes with NullIntolerant {
override def dataType: DataType = BooleanType
override def inputTypes: Seq[AbstractDataType] = Seq(StringType, StringType)
override def doColumnar(lhs: GpuColumnVector, rhs: GpuScalar): ColumnVector = {
RegexRewriteUtils.literalRangePattern(lhs.getBase, rhs.getBase, length, start, end)
}
override def doColumnar(numRows: Int, lhs: GpuScalar, rhs: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(lhs, numRows, left.dataType)) { expandedLhs =>
doColumnar(expandedLhs, rhs)
}
}
}
abstract class GpuRegExpTernaryBase
extends GpuTernaryExpressionArgsAnyScalarScalar {
override def dataType: DataType = StringType
override def doColumnar(numRows: Int, val0: GpuScalar, val1: GpuScalar,
val2: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(val0, numRows, first.dataType)) { val0Col =>
doColumnar(val0Col, val1, val2)
}
}
}
case class GpuRegExpReplace(
srcExpr: Expression,
searchExpr: Expression,
replaceExpr: Expression)
(javaRegexpPattern: String,
cudfRegexPattern: String,
cudfReplacementString: String,
searchList: Option[Seq[String]],
replaceOpt: Option[GpuRegExpReplaceOpt])
extends GpuRegExpTernaryBase with ImplicitCastInputTypes with HasGpuStringReplace {
override def otherCopyArgs: Seq[AnyRef] = Seq(javaRegexpPattern,
cudfRegexPattern, cudfReplacementString, searchList, replaceOpt)
override def inputTypes: Seq[DataType] = Seq(StringType, StringType, StringType)
override def first: Expression = srcExpr
override def second: Expression = searchExpr
override def third: Expression = replaceExpr
def this(srcExpr: Expression, searchExpr: Expression)(javaRegexpPattern: String,
cudfRegexPattern: String, cudfReplacementString: String) = {
this(srcExpr, searchExpr, GpuLiteral("", StringType))(javaRegexpPattern,
cudfRegexPattern, cudfReplacementString, None, None)
}
override def doColumnar(
strExpr: GpuColumnVector,
searchExpr: GpuScalar,
replaceExpr: GpuScalar): ColumnVector = {
// For empty strings and a regex containing only a zero-match repetition,
// the behavior in some versions of Spark is different.
// see https://github.com/NVIDIA/spark-rapids/issues/5456
replaceOpt match {
case Some(GpuRegExpStringReplace) =>
doStringReplace(strExpr, searchExpr, replaceExpr)
case Some(GpuRegExpStringReplaceMulti) =>
searchList match {
case Some(searches) =>
doStringReplaceMulti(strExpr, searches, cudfReplacementString)
case _ =>
throw new IllegalStateException("Need a replace")
}
case _ =>
val prog = new RegexProgram(cudfRegexPattern, CaptureGroups.NON_CAPTURE)
if (SparkShimImpl.reproduceEmptyStringBug &&
GpuRegExpUtils.isEmptyRepetition(javaRegexpPattern)) {
val isEmpty = withResource(strExpr.getBase.getCharLengths) { len =>
withResource(Scalar.fromInt(0)) { zero =>
len.equalTo(zero)
}
}
withResource(isEmpty) { _ =>
withResource(GpuScalar.from("", DataTypes.StringType)) { emptyString =>
withResource(GpuScalar.from(cudfReplacementString, DataTypes.StringType)) { rep =>
withResource(strExpr.getBase.replaceRegex(prog, rep)) { replacement =>
isEmpty.ifElse(emptyString, replacement)
}
}
}
}
} else {
withResource(Scalar.fromString(cudfReplacementString)) { rep =>
strExpr.getBase.replaceRegex(prog, rep)
}
}
}
}
}
case class GpuRegExpReplaceWithBackref(
override val child: Expression,
searchExpr: Expression,
replaceExpr: Expression)
(javaRegexpPattern: String,
cudfRegexPattern: String,
cudfReplacementString: String)
extends GpuUnaryExpression with ImplicitCastInputTypes {
override def otherCopyArgs: Seq[AnyRef] = Seq(javaRegexpPattern, cudfRegexPattern,
cudfReplacementString)
override def inputTypes: Seq[DataType] = Seq(StringType)
override def dataType: DataType = StringType
override protected def doColumnar(input: GpuColumnVector): ColumnVector = {
val prog = new RegexProgram(cudfRegexPattern)
if (SparkShimImpl.reproduceEmptyStringBug &&
GpuRegExpUtils.isEmptyRepetition(javaRegexpPattern)) {
val isEmpty = withResource(input.getBase.getCharLengths) { len =>
withResource(Scalar.fromInt(0)) { zero =>
len.equalTo(zero)
}
}
withResource(isEmpty) { _ =>
withResource(GpuScalar.from("", DataTypes.StringType)) { emptyString =>
withResource(input.getBase.stringReplaceWithBackrefs(prog,
cudfReplacementString)) { replacement =>
isEmpty.ifElse(emptyString, replacement)
}
}
}
} else {
input.getBase.stringReplaceWithBackrefs(prog, cudfReplacementString)
}
}
}
class GpuRegExpExtractMeta(
expr: RegExpExtract,
conf: RapidsConf,
parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule)
extends TernaryExprMeta[RegExpExtract](expr, conf, parent, rule) {
private var pattern: Option[String] = None
override def tagExprForGpu(): Unit = {
GpuRegExpUtils.tagForRegExpEnabled(this)
ShimLoader.getShimVersion match {
case _: DatabricksShimVersion if expr.subject.isInstanceOf[InputFileName] =>
willNotWorkOnGpu("avoiding Databricks Delta problem with regexp extract")
case _ =>
}
var numGroups = 0
val groupIdx = expr.idx match {
case Literal(value, DataTypes.IntegerType) =>
Some(value.asInstanceOf[Int])
case _ =>
willNotWorkOnGpu("GPU only supports literal index")
None
}
expr.regexp match {
case Literal(str: UTF8String, DataTypes.StringType) if str != null =>
try {
val javaRegexpPattern = str.toString
// verify that we support this regex and can transpile it to cuDF format
val (transpiledAST, _) =
new CudfRegexTranspiler(RegexFindMode).getTranspiledAST(
javaRegexpPattern, groupIdx, None)
GpuRegExpUtils.validateRegExpComplexity(this, transpiledAST)
pattern = Some(transpiledAST.toRegexString)
numGroups = GpuRegExpUtils.countGroups(javaRegexpPattern)
} catch {
case e: RegexUnsupportedException =>
willNotWorkOnGpu(e.getMessage)
}
case _ =>
willNotWorkOnGpu(s"only non-null literal strings are supported on GPU")
}
groupIdx.foreach { idx =>
if (idx < 0) {
willNotWorkOnGpu("the specified group index cannot be less than zero")
}
if (idx > numGroups) {
willNotWorkOnGpu(
s"regex group count is $numGroups, but the specified group index is $idx")
}
}
}
override def convertToGpu(
str: Expression,
regexp: Expression,
idx: Expression): GpuExpression = {
val cudfPattern = pattern.getOrElse(
throw new IllegalStateException("Expression has not been tagged with cuDF regex pattern"))
GpuRegExpExtract(str, regexp, idx)(cudfPattern)
}
}
case class GpuRegExpExtract(
subject: Expression,
regexp: Expression,
idx: Expression)(cudfRegexPattern: String)
extends GpuRegExpTernaryBase with ImplicitCastInputTypes with NullIntolerant {
override def otherCopyArgs: Seq[AnyRef] = cudfRegexPattern :: Nil
override def inputTypes: Seq[AbstractDataType] = Seq(StringType, StringType, IntegerType)
override def first: Expression = subject
override def second: Expression = regexp
override def third: Expression = idx
override def prettyName: String = "regexp_extract"
override def doColumnar(
str: GpuColumnVector,
regexp: GpuScalar,
idx: GpuScalar): ColumnVector = {
// When group index is 0, it means extract the entire pattern including those parts which
// don't belong to any group. For instance,
// regexp_extract('123abcEfg', '([0-9]+)[a-z]+([A-Z])', 0) => 123abcE
// regexp_extract('123abcEfg', '([0-9]+)[a-z]+([A-Z])', 1) => 123
// regexp_extract('123abcEfg', '([0-9]+)[a-z]+([A-Z])', 2) => E
//
// To support the full match (group index 0), we wrap a pair of parentheses on the original
// cudfRegexPattern.
val (extractPattern, groupIndex) = idx.getValue match {
case i: Int if i == 0 =>
("(" + cudfRegexPattern + ")", 0)
case _ =>
// Since we have transpiled all but one of the capture groups to non-capturing, the index
// here moves to 0 to single out the one capture group left
(cudfRegexPattern, 0)
}
// There are some differences in behavior between cuDF and Java so we have
// to handle those cases here.
//
// Given the pattern `^([a-z]*)([0-9]*)([a-z]*)$` the following table
// shows the value that would be extracted for group index 2 given a range
// of inputs. The behavior is mostly consistent except for the case where
// the input is non-null and does not match the pattern.
//
// | Input | Java | cuDF |
// |--------|-------|-------|
// | '' | '' | '' |
// | NULL | NULL | NULL |
// | 'a1a' | '1' | '1' |
// | '1a1' | '' | NULL |
withResource(str.getBase.extractRe(new RegexProgram(extractPattern))) { extract =>
withResource(GpuScalar.from("", DataTypes.StringType)) { emptyString =>
val outputNullAndInputNotNull =
withResource(extract.getColumn(groupIndex).isNull) { outputNull =>
withResource(str.getBase.isNotNull) { inputNotNull =>
outputNull.and(inputNotNull)
}
}
withResource(outputNullAndInputNotNull) {
_.ifElse(emptyString, extract.getColumn(groupIndex))
}
}
}
}
}
class GpuRegExpExtractAllMeta(
expr: RegExpExtractAll,
conf: RapidsConf,
parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule)
extends TernaryExprMeta[RegExpExtractAll](expr, conf, parent, rule) {
private var pattern: Option[String] = None
override def tagExprForGpu(): Unit = {
GpuRegExpUtils.tagForRegExpEnabled(this)
var numGroups = 0
val groupIdx = expr.idx match {
case Literal(value, DataTypes.IntegerType) =>
Some(value.asInstanceOf[Int])
case _ =>
willNotWorkOnGpu("GPU only supports literal index")
None
}
expr.regexp match {
case Literal(str: UTF8String, DataTypes.StringType) if str != null =>
try {
val javaRegexpPattern = str.toString
// verify that we support this regex and can transpile it to cuDF format
val (transpiledAST, _) =
new CudfRegexTranspiler(RegexFindMode).getTranspiledAST(
javaRegexpPattern, groupIdx, None)
GpuRegExpUtils.validateRegExpComplexity(this, transpiledAST)
pattern = Some(transpiledAST.toRegexString)
numGroups = GpuRegExpUtils.countGroups(javaRegexpPattern)
} catch {
case e: RegexUnsupportedException =>
willNotWorkOnGpu(e.getMessage)
}
case _ =>
willNotWorkOnGpu(s"only non-null literal strings are supported on GPU")
}
groupIdx.foreach { idx =>
if (idx < 0) {
willNotWorkOnGpu("the specified group index cannot be less than zero")
}
if (idx > numGroups) {
willNotWorkOnGpu(
s"regex group count is $numGroups, but the specified group index is $idx")
}
}
}
override def convertToGpu(
str: Expression,
regexp: Expression,
idx: Expression): GpuExpression = {
val cudfPattern = pattern.getOrElse(
throw new IllegalStateException("Expression has not been tagged with cuDF regex pattern"))
GpuRegExpExtractAll(str, regexp, idx)(cudfPattern)
}
}
case class GpuRegExpExtractAll(
str: Expression,
regexp: Expression,
idx: Expression)(cudfRegexPattern: String)
extends GpuRegExpTernaryBase with ImplicitCastInputTypes with NullIntolerant {
override def otherCopyArgs: Seq[AnyRef] = cudfRegexPattern :: Nil
override def dataType: DataType = ArrayType(StringType, containsNull = true)
override def inputTypes: Seq[AbstractDataType] = Seq(StringType, StringType, IntegerType)
override def first: Expression = str
override def second: Expression = regexp
override def third: Expression = idx
override def prettyName: String = "regexp_extract_all"
override def doColumnar(
str: GpuColumnVector,
regexp: GpuScalar,
idx: GpuScalar): ColumnVector = {
idx.getValue.asInstanceOf[Int] match {
case 0 =>
val prog = new RegexProgram(cudfRegexPattern, CaptureGroups.NON_CAPTURE)
str.getBase.extractAllRecord(prog, 0)
case _ =>
// Extract matches corresponding to idx. cuDF's extract_all_record does not support
// group idx, so we must manually extract the relevant matches. Example:
// Given the pattern (\d+)-(\d+) and idx=1
//
// | Input | Java | cuDF |
// |-----------------|-----------------|--------------------------------|
// | '1-2, 3-4, 5-6' | ['1', '3', '5'] | ['1', '2', '3', '4', '5', '6'] |
//
// Since idx=1 and the pattern has 2 capture groups, we take the 1st element and every
// 2nd element afterwards from the cuDF list
val rowCount = str.getRowCount
val prog = new RegexProgram(cudfRegexPattern)
val extractedWithNulls = withResource(
// Now the index is always 1 because we have transpiled all the capture groups to the
// single group that we care about, so we just have to handle the idx = 1 case here
str.getBase.extractAllRecord(prog, 1)) { allExtracted =>
withResource(allExtracted.countElements) { listSizes =>
withResource(listSizes.max) { maxSize =>
val maxSizeInt = maxSize.getInt
val stringCols = Range(0, maxSizeInt, 1).safeMap {
i =>
withResource(Scalar.fromInt(i)) { scalarIndex =>
withResource(ColumnVector.fromScalar(scalarIndex, rowCount.toInt)) {
index => allExtracted.extractListElement(index)
}
}
}
withResource(stringCols) { _ =>
ColumnVector.makeList(rowCount, DType.STRING, stringCols: _*)
}
}
}
}
// Filter out null values in the lists
val extractedStrings = withResource(extractedWithNulls) { _ =>
val booleanMask = withResource(extractedWithNulls.getListOffsetsView) { offsetsCol =>
withResource(extractedWithNulls.getChildColumnView(0)) { stringCol =>
withResource(stringCol.isNotNull) { isNotNull =>
isNotNull.makeListFromOffsets(rowCount, offsetsCol)
}
}
}
withResource(booleanMask) {
extractedWithNulls.applyBooleanMask
}
}
// If input is null, output should also be null
withResource(extractedStrings) { s =>
withResource(GpuScalar.from(null, DataTypes.createArrayType(DataTypes.StringType))) {
nullStringList =>
withResource(str.getBase.isNull) { isInputNull =>
isInputNull.ifElse(nullStringList, s)
}
}
}
}
}
}
class SubstringIndexMeta(
expr: SubstringIndex,
override val conf: RapidsConf,
override val parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule)
extends TernaryExprMeta[SubstringIndex](expr, conf, parent, rule) {
override def convertToGpu(
column: Expression,
delim: Expression,
count: Expression): GpuExpression = GpuSubstringIndex(column, delim, count)
}
case class GpuSubstringIndex(strExpr: Expression,
ignoredDelimExpr: Expression,
ignoredCountExpr: Expression)
extends GpuTernaryExpressionArgsAnyScalarScalar with ImplicitCastInputTypes {
override def dataType: DataType = StringType
override def inputTypes: Seq[DataType] = Seq(StringType, StringType, IntegerType)
override def first: Expression = strExpr
override def second: Expression = ignoredDelimExpr
override def third: Expression = ignoredCountExpr
override def prettyName: String = "substring_index"
override def doColumnar(str: GpuColumnVector, delim: GpuScalar,
count: GpuScalar): ColumnVector = {
if (delim.isValid && count.isValid) {
GpuSubstringIndexUtils.substringIndex(str.getBase, delim.getBase,
count.getValue.asInstanceOf[Int])
} else {
GpuColumnVector.columnVectorFromNull(str.getRowCount.toInt, StringType)
}
}
override def doColumnar(numRows: Int, val0: GpuScalar, val1: GpuScalar,
val2: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(val0, numRows, strExpr.dataType)) { val0Col =>
doColumnar(val0Col, val1, val2)
}
}
}
trait BasePad
extends GpuTernaryExpressionArgsAnyScalarScalar
with ImplicitCastInputTypes
with NullIntolerant {
val str: Expression
val len: Expression
val pad: Expression
val direction: PadSide
override def first: Expression = str
override def second: Expression = len
override def third: Expression = pad
override def dataType: DataType = StringType
override def inputTypes: Seq[DataType] = Seq(StringType, IntegerType, StringType)
override def doColumnar(str: GpuColumnVector, len: GpuScalar, pad: GpuScalar): ColumnVector = {
if (len.isValid && pad.isValid) {
val l = math.max(0, len.getValue.asInstanceOf[Int])
val padStr = if (pad.isValid) {
pad.getValue.asInstanceOf[UTF8String].toString
} else {
null
}
withResource(str.getBase.pad(l, direction, padStr)) { padded =>
padded.substring(0, l)
}
} else {
GpuColumnVector.columnVectorFromNull(str.getRowCount.toInt, StringType)
}
}
override def doColumnar(numRows: Int, val0: GpuScalar, val1: GpuScalar,
val2: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(val0, numRows, str.dataType)) { val0Col =>
doColumnar(val0Col, val1, val2)
}
}
}
case class GpuStringLPad(str: Expression, len: Expression, pad: Expression)
extends BasePad {
val direction = PadSide.LEFT
override def prettyName: String = "lpad"
def this(str: Expression, len: Expression) = {
this(str, len, GpuLiteral(" ", StringType))
}
}
case class GpuStringRPad(str: Expression, len: Expression, pad: Expression)
extends BasePad {
val direction = PadSide.RIGHT
override def prettyName: String = "rpad"
def this(str: Expression, len: Expression) = {
this(str, len, GpuLiteral(" ", StringType))
}
}
abstract class StringSplitRegExpMeta[INPUT <: TernaryExpression](expr: INPUT,
conf: RapidsConf,
parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule)
extends TernaryExprMeta[INPUT](expr, conf, parent, rule) {
import GpuOverrides._
/**
* Return the cudf transpiled regex pattern, and a boolean flag indicating whether the input
* delimiter is really a regex patter or just a literal string.
*/
def checkRegExp(delimExpr: Expression): Option[(String, Boolean)] = {
var pattern: String = ""
var isRegExp: Boolean = false
val delim = extractLit(delimExpr)
if (delim.isEmpty) {
willNotWorkOnGpu("Only literal delimiter patterns are supported")
} else {
val utf8Str = delim.get.value.asInstanceOf[UTF8String]
if (utf8Str == null) {
willNotWorkOnGpu("Delimiter pattern is null")
} else {
if (utf8Str.numChars() == 0) {
willNotWorkOnGpu("An empty delimiter pattern is not supported")
}
val transpiler = new CudfRegexTranspiler(RegexSplitMode)
transpiler.transpileToSplittableString(utf8Str.toString) match {
case Some(simplified) =>
pattern = simplified
case None =>
try {
val (transpiledAST, _) = transpiler.getTranspiledAST(utf8Str.toString, None, None)
GpuRegExpUtils.validateRegExpComplexity(this, transpiledAST)
pattern = transpiledAST.toRegexString
isRegExp = true
} catch {
case e: RegexUnsupportedException =>
willNotWorkOnGpu(e.getMessage)
}
}
}
}
Some((pattern, isRegExp))
}
def throwUncheckedDelimiterException() =
throw new IllegalStateException("Delimiter expression has not been checked for regex pattern")
}
class GpuStringSplitMeta(
expr: StringSplit,
conf: RapidsConf,
parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule)
extends StringSplitRegExpMeta[StringSplit](expr, conf, parent, rule) {
import GpuOverrides._
private var pattern = ""
private var isRegExp = false
override def tagExprForGpu(): Unit = {
checkRegExp(expr.regex) match {
case Some((p, isRe)) =>
pattern = p
isRegExp = isRe
case _ => throwUncheckedDelimiterException()
}
// if this is a valid regular expression, then we should check the configuration
// whether to run this on the GPU
if (isRegExp) {
GpuRegExpUtils.tagForRegExpEnabled(this)
}
extractLit(expr.limit) match {
case Some(Literal(_: Int, _)) =>
case _ =>
willNotWorkOnGpu("only literal limit is supported")
}
}
override def convertToGpu(
str: Expression,
regexp: Expression,
limit: Expression): GpuExpression = {
GpuStringSplit(str, regexp, limit, pattern, isRegExp)
}
}
case class GpuStringSplit(str: Expression, regex: Expression, limit: Expression,
pattern: String, isRegExp: Boolean)
extends GpuTernaryExpression with ImplicitCastInputTypes {
override def dataType: DataType = ArrayType(StringType, containsNull = false)
override def inputTypes: Seq[DataType] = Seq(StringType, StringType, IntegerType)
override def first: Expression = str
override def second: Expression = regex
override def third: Expression = limit
override def prettyName: String = "split"
override def doColumnar(str: GpuColumnVector, regex: GpuScalar,
limit: GpuScalar): ColumnVector = {
limit.getValue.asInstanceOf[Int] match {
case 0 =>
// Same as splitting as many times as possible
if (isRegExp) {
str.getBase.stringSplitRecord(new RegexProgram(pattern, CaptureGroups.NON_CAPTURE), -1)
} else {
str.getBase.stringSplitRecord(pattern, -1)
}
case 1 =>
// Short circuit GPU and just return a list containing the original input string
withResource(str.getBase.isNull) { isNull =>
withResource(GpuScalar.from(null, dataType)) { nullStringList =>
withResource(ColumnVector.makeList(str.getBase)) { list =>
isNull.ifElse(nullStringList, list)
}
}
}
case n =>
if (isRegExp) {
str.getBase.stringSplitRecord(new RegexProgram(pattern, CaptureGroups.NON_CAPTURE), n)
} else {
str.getBase.stringSplitRecord(pattern, n)
}
}
}
override def doColumnar(numRows: Int, val0: GpuScalar, val1: GpuScalar,
val2: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(val0, numRows, str.dataType)) { val0Col =>
doColumnar(val0Col, val1, val2)
}
}
override def doColumnar(
str: GpuColumnVector,
regex: GpuColumnVector,
limit: GpuColumnVector): ColumnVector =
throw new IllegalStateException("This is not supported yet")
override def doColumnar(
str: GpuScalar,
regex: GpuColumnVector,
limit: GpuColumnVector): ColumnVector =
throw new IllegalStateException("This is not supported yet")
override def doColumnar(
str: GpuScalar,
regex: GpuScalar,
limit: GpuColumnVector): ColumnVector =
throw new IllegalStateException("This is not supported yet")
override def doColumnar(
str: GpuScalar,
regex: GpuColumnVector,
limit: GpuScalar): ColumnVector =
throw new IllegalStateException("This is not supported yet")
override def doColumnar(
str: GpuColumnVector,
regex: GpuScalar,
limit: GpuColumnVector): ColumnVector =
throw new IllegalStateException("This is not supported yet")
override def doColumnar(
str: GpuColumnVector,
regex: GpuColumnVector,
limit: GpuScalar): ColumnVector =
throw new IllegalStateException("This is not supported yet")
}
class GpuStringToMapMeta(expr: StringToMap,
conf: RapidsConf,
parent: Option[RapidsMeta[_, _, _]],
rule: DataFromReplacementRule)
extends StringSplitRegExpMeta[StringToMap](expr, conf, parent, rule) {
private def checkFoldable(children: Seq[Expression]): Unit = {
if (children.forall(_.foldable)) {
willNotWorkOnGpu("result can be compile-time evaluated")
}
}
private var pairDelimInfo: Option[(String, Boolean)] = None
private var keyValueDelimInfo: Option[(String, Boolean)] = None
override def tagExprForGpu(): Unit = {
checkFoldable(expr.children)
pairDelimInfo = checkRegExp(expr.pairDelim)
keyValueDelimInfo = checkRegExp(expr.keyValueDelim)
}
override def convertToGpu(strExpr: Expression,
pairDelimExpr: Expression,
keyValueDelimExpr: Expression): GpuExpression = {
val pairDelim: (String, Boolean) = pairDelimInfo.getOrElse(throwUncheckedDelimiterException())
val keyValueDelim: (String, Boolean) = keyValueDelimInfo.getOrElse(
throwUncheckedDelimiterException())
GpuStringToMap(strExpr, pairDelimExpr, keyValueDelimExpr, pairDelim._1, pairDelim._2,
keyValueDelim._1, keyValueDelim._2)
}
}
case class GpuStringToMap(strExpr: Expression,
pairDelimExpr: Expression,
keyValueDelimExpr: Expression,
pairDelim: String, isPairDelimRegExp: Boolean,
keyValueDelim: String, isKeyValueDelimRegExp: Boolean)
extends GpuExpression with ShimExpression with ExpectsInputTypes {
override def dataType: MapType = MapType(StringType, StringType)
override def inputTypes: Seq[AbstractDataType] = Seq(StringType, StringType, StringType)
override def prettyName: String = "str_to_map"
override def children: Seq[Expression] = Seq(strExpr, pairDelimExpr, keyValueDelimExpr)
override def nullable: Boolean = children.head.nullable
override def foldable: Boolean = children.forall(_.foldable)
override def columnarEval(batch: ColumnarBatch): GpuColumnVector = {
withResourceIfAllowed(strExpr.columnarEvalAny(batch)) {
case strsCol: GpuColumnVector => toMap(strsCol)
case str: GpuScalar =>
withResource(GpuColumnVector.from(str, batch.numRows, str.dataType)) {
strsCol => toMap(strsCol)
}
case v =>
throw new UnsupportedOperationException(s"Unsupported data '($v: ${v.getClass} " +
"for GpuStringToMap.")
}
}
private def toMap(str: GpuColumnVector): GpuColumnVector = {
// Firstly, split the input strings into lists of strings.
val listsOfStrings = if (isPairDelimRegExp) {
str.getBase.stringSplitRecord(new RegexProgram(pairDelim, CaptureGroups.NON_CAPTURE))
} else {
str.getBase.stringSplitRecord(pairDelim)
}
withResource(listsOfStrings) { listsOfStrings =>
// Extract strings column from the output lists column.
withResource(listsOfStrings.getChildColumnView(0)) { stringsCol =>
// Split the key-value strings into pairs of strings of key-value (using limit = 2).
val keysValuesTable = if (isKeyValueDelimRegExp) {
stringsCol.stringSplit(new RegexProgram(keyValueDelim, CaptureGroups.NON_CAPTURE), 2)
} else {
stringsCol.stringSplit(keyValueDelim, 2)
}
withResource(keysValuesTable) { keysValuesTable =>
def toMapFromValues(values: ColumnVector): GpuColumnVector = {
// This code is safe, because the `keysValuesTable` always has at least one column
// (guarantee by `cudf::strings::split` implementation).
val keys = keysValuesTable.getColumn(0)
// Zip the key-value pairs into structs.
withResource(ColumnView.makeStructView(keys, values)) { structsCol =>
// Make a lists column from the new structs column, which will have the same shape
// as the previous lists of strings column.
withResource(GpuListUtils.replaceListDataColumnAsView(listsOfStrings, structsCol)) {
listsOfStructs =>
GpuCreateMap.createMapFromKeysValuesAsStructs(dataType, listsOfStructs)
}
}
}
// If the output from stringSplit has only one column (the map keys), we set all the
// output values to nulls.
if (keysValuesTable.getNumberOfColumns < 2) {
withResource(GpuColumnVector.columnVectorFromNull(
keysValuesTable.getRowCount.asInstanceOf[Int], StringType)) {
allNulls => toMapFromValues(allNulls)
}
} else {
toMapFromValues(keysValuesTable.getColumn(1))
}
}
}
}
}
}
object GpuStringInstr {
def optimizeContains(cmp: GpuExpression): GpuExpression = {
cmp match {
case GpuGreaterThan(GpuStringInstr(str, substr: GpuLiteral), GpuLiteral(0, _)) =>
// instr(A, B) > 0 becomes contains(A, B)
GpuContains(str, substr)
case GpuGreaterThanOrEqual(GpuStringInstr(str, substr: GpuLiteral), GpuLiteral(1, _)) =>
// instr(A, B) >= 1 becomes contains(A, B)
GpuContains(str, substr)
case GpuLessThan(GpuLiteral(0, _), GpuStringInstr(str, substr: GpuLiteral)) =>
// 0 < instr(A, B) becomes contains(A, B)
GpuContains(str, substr)
case GpuLessThanOrEqual(GpuLiteral(1, _), GpuStringInstr(str, substr: GpuLiteral)) =>
// 1 <= instr(A, B) becomes contains(A, B)
GpuContains(str, substr)
case _ =>
cmp
}
}
}
case class GpuStringInstr(str: Expression, substr: Expression)
extends GpuBinaryExpressionArgsAnyScalar
with ImplicitCastInputTypes
with NullIntolerant {
// Locate the position of the first occurrence of substr column in the given string.
// returns null if one of the arguments is null
// returns zero if not found
// return values are 1 based.
override def dataType: DataType = IntegerType
override def inputTypes: Seq[AbstractDataType] = Seq(StringType, StringType)
override def left: Expression = str
override def right: Expression = substr
override def doColumnar(lhs: GpuColumnVector, rhs: GpuScalar): ColumnVector = {
withResource(lhs.getBase.stringLocate(rhs.getBase)) { strLocateRes =>
withResource(Scalar.fromInt(1)) { sv1 =>
strLocateRes.add(sv1)
}
}
}
override def doColumnar(numRows: Int, lhs: GpuScalar, rhs: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(lhs, numRows, str.dataType)) { expandedLhs =>
doColumnar(expandedLhs, rhs)
}
}
}
class GpuConvMeta(
expr: Conv,
conf: RapidsConf,
parent: Option[RapidsMeta[_,_,_]],
rule: DataFromReplacementRule) extends TernaryExprMeta(expr, conf, parent, rule) {
override def tagExprForGpu(): Unit = {
val fromBaseLit = GpuOverrides.extractLit(expr.fromBaseExpr)
val toBaseLit = GpuOverrides.extractLit(expr.toBaseExpr)
val errorPostfix = "only literal 10 or 16 are supported for source and target radixes"
(fromBaseLit, toBaseLit) match {
case (Some(Literal(fromBaseVal, IntegerType)), Some(Literal(toBaseVal, IntegerType))) =>
def isBaseSupported(base: Any): Boolean = base == 10 || base == 16
if (!isBaseSupported(fromBaseVal) && !isBaseSupported(toBaseVal)) {
willNotWorkOnGpu(because = s"both ${fromBaseVal} and ${toBaseVal} are not " +
s"a supported radix, ${errorPostfix}")
} else if (!isBaseSupported(fromBaseVal)) {
willNotWorkOnGpu(because = s"${fromBaseVal} is not a supported source radix, " +
s"${errorPostfix}")
} else if (!isBaseSupported(toBaseVal)) {
willNotWorkOnGpu(because = s"${toBaseVal} is not a supported target radix, " +
s"${errorPostfix}")
}
case _ =>
// This will never happen in production as the function signature enforces
// integer types for the bases, but nice to have an edge case handling.
willNotWorkOnGpu(because = "either source radix or target radix is not an integer " +
"literal, " + errorPostfix)
}
}
override def convertToGpu(
numStr: Expression,
fromBase: Expression,
toBase: Expression): GpuExpression = GpuConv(numStr, fromBase, toBase)
}
case class GpuConv(num: Expression, fromBase: Expression, toBase: Expression)
extends GpuTernaryExpression {
override def doColumnar(
v1: GpuColumnVector,
v2: GpuColumnVector,
v3: GpuColumnVector): ColumnVector = {
throw new UnsupportedOperationException()
}
override def doColumnar(v1: GpuScalar, v2: GpuColumnVector, v3: GpuColumnVector): ColumnVector = {
throw new UnsupportedOperationException()
}
override def doColumnar(v1: GpuScalar, v2: GpuScalar, v3: GpuColumnVector): ColumnVector = {
throw new UnsupportedOperationException()
}
override def doColumnar(v1: GpuScalar, v2: GpuColumnVector, v3: GpuScalar): ColumnVector = {
throw new UnsupportedOperationException()
}
override def doColumnar(v1: GpuColumnVector, v2: GpuScalar, v3: GpuColumnVector): ColumnVector = {
throw new UnsupportedOperationException()
}
override def doColumnar(v1: GpuColumnVector, v2: GpuColumnVector, v3: GpuScalar): ColumnVector = {
throw new UnsupportedOperationException()
}
override def doColumnar(
numRows: Int,
strScalar: GpuScalar,
fromBase: GpuScalar,
toBase: GpuScalar
): ColumnVector = {
withResource(GpuColumnVector.from(strScalar, numRows, strScalar.dataType)) { strCV =>
doColumnar(strCV, fromBase, toBase)
}
}
override def doColumnar(
str: GpuColumnVector,
fromBase: GpuScalar,
toBase: GpuScalar
): ColumnVector = {
(fromBase.getValue, toBase.getValue) match {
case (fromRadix: Int, toRadix: Int) =>
withResource(
CastStrings.toIntegersWithBase(str.getBase, fromRadix, false, DType.UINT64)
) { intCV =>
CastStrings.fromIntegersWithBase(intCV, toRadix)
}
case _ => throw new UnsupportedOperationException()
}
}
override def first: Expression = num
override def second: Expression = fromBase
override def third: Expression = toBase
override def dataType: DataType = StringType
}
case class GpuFormatNumber(x: Expression, d: Expression)
extends GpuBinaryExpression with ExpectsInputTypes with NullIntolerant {
override def left: Expression = x
override def right: Expression = d
override def dataType: DataType = StringType
override def nullable: Boolean = true
override def inputTypes: Seq[AbstractDataType] = Seq(NumericType, IntegerType)
private def removeNegSign(cv: ColumnVector): ColumnVector = {
withResource(Scalar.fromString("-")) { negativeSign =>
cv.lstrip(negativeSign)
}
}
private def getPartsFromDecimal(cv: ColumnVector, d: Int, scale: Int):
(ColumnVector, ColumnVector) = {
// prevent d too large to fit in decimalType
val roundingScale = scale.min(d)
// append zeros to the end of decPart, zerosNum = d - scale
// if d <= scale, no need to append zeros, if scale < 0, append d zeros
val appendZeroNum = (d - scale).max(0).min(d)
val (intPart, decTemp) = if (roundingScale <= 0) {
withResource(ArrayBuffer.empty[ColumnVector]) { resourceArray =>
val intPart = withResource(cv.round(roundingScale, RoundMode.HALF_EVEN)) { rounded =>
rounded.castTo(DType.STRING)
}
resourceArray += intPart
// if intString starts with 0, it must be "00000...", replace it with "0"
val (isZero, zeroCv) = withResource(Scalar.fromString("0")) { zero =>
withResource(intPart.startsWith(zero)) { isZero =>
(isZero.incRefCount(), ColumnVector.fromScalar(zero, cv.getRowCount.toInt))
}
}
val intPartZeroHandled = withResource(isZero) { isZero =>
withResource(zeroCv) { zeroCv =>
isZero.ifElse(zeroCv, intPart)
}
}
resourceArray += intPartZeroHandled
// a temp decPart is empty before appending zeros
val decPart = withResource(Scalar.fromString("")) { emptyString =>
ColumnVector.fromScalar(emptyString, cv.getRowCount.toInt)
}
resourceArray += decPart
(intPartZeroHandled.incRefCount(), decPart.incRefCount())
}
} else {
withResource(cv.round(roundingScale, RoundMode.HALF_EVEN)) { rounded =>
withResource(rounded.castTo(DType.STRING)) { roundedStr =>
withResource(roundedStr.stringSplit(".", 2)) { intAndDec =>
(intAndDec.getColumn(0).incRefCount(), intAndDec.getColumn(1).incRefCount())
}
}
}
}
closeOnExcept(ArrayBuffer.empty[ColumnVector]) { resourceArray =>
// remove negative sign from intPart, sign will be handled later
val intPartPos = closeOnExcept(decTemp) { _ =>
withResource(intPart) { _ =>
removeNegSign(intPart)
}
}
resourceArray += intPartPos
// append zeros
val appendZeros = "0" * appendZeroNum
val appendZerosCv = closeOnExcept(decTemp) { _ =>
withResource(Scalar.fromString(appendZeros)) { zeroString =>
ColumnVector.fromScalar(zeroString, cv.getRowCount.toInt)
}
}
val decPart = withResource(decTemp) { _ =>
withResource(appendZerosCv) { _ =>
ColumnVector.stringConcatenate(Array(decTemp, appendZerosCv))
}
}
(intPartPos, decPart)
}
}
private def getParts(cv: ColumnVector, d: Int): (ColumnVector, ColumnVector) = {
// get int part and dec part from a column vector, int part will be set to positive
x.dataType match {
case DecimalType.Fixed(_, scale) => {
getPartsFromDecimal(cv, d, scale)
}
case IntegerType | LongType | ShortType | ByteType => {
val intPartPos = withResource(cv.castTo(DType.STRING)) { intPart =>
removeNegSign(intPart)
}
// dec part is all zeros
val dzeros = "0" * d
val decPart = closeOnExcept(intPartPos) { _ =>
withResource(Scalar.fromString(dzeros)) { zeroString =>
ColumnVector.fromScalar(zeroString, cv.getRowCount.toInt)
}
}
(intPartPos, decPart)
}
case _ => {
throw new UnsupportedOperationException(s"format_number doesn't support type ${x.dataType}")
}
}
}
private def negativeCheck(cv: ColumnVector): ColumnVector = {
withResource(cv.castTo(DType.STRING)) { cvStr =>
withResource(Scalar.fromString("-")) { negativeSign =>
cvStr.startsWith(negativeSign)
}
}
}
private def removeExtraCommas(str: ColumnVector): ColumnVector = {
withResource(Scalar.fromString(",")) { comma =>
str.rstrip(comma)
}
}
private def addCommas(str: ColumnVector): ColumnVector = {
val maxstrlen = withResource(str.getCharLengths()) { strlen =>
withResource(strlen.max()) { maxlen =>
maxlen.isValid match {
case true => maxlen.getInt
case false => 0
}
}
}
val sepCol = withResource(Scalar.fromString(",")) { sep =>
ColumnVector.fromScalar(sep, str.getRowCount.toInt)
}
val substrs = closeOnExcept(sepCol) { _ =>
(0 until maxstrlen by 3).safeMap { i =>
str.substring(i, i + 3).asInstanceOf[ColumnView]
}.toArray
}
withResource(substrs) { _ =>
withResource(sepCol) { _ =>
withResource(ColumnVector.stringConcatenate(substrs, sepCol)) { res =>
removeExtraCommas(res)
}
}
}
}
private def formatNumberNonKernel(cv: ColumnVector, d: Int): ColumnVector = {
val (integerPart, decimalPart) = getParts(cv, d)
// reverse integer part for adding commas
val resWithDecimalPart = withResource(decimalPart) { _ =>
val reversedIntegerPart = withResource(integerPart) { intPart =>
intPart.reverseStringsOrLists()
}
val reversedIntegerPartWithCommas = withResource(reversedIntegerPart) { _ =>
addCommas(reversedIntegerPart)
}
// reverse result back
val reverseBack = withResource(reversedIntegerPartWithCommas) { r =>
r.reverseStringsOrLists()
}
d match {
case 0 => {
// d == 0, only return integer part
reverseBack
}
case _ => {
// d > 0, append decimal part to result
withResource(reverseBack) { _ =>
withResource(Scalar.fromString(".")) { point =>
withResource(Scalar.fromString("")) { empty =>
ColumnVector.stringConcatenate(point, empty, Array(reverseBack, decimalPart))
}
}
}
}
}
}
// add negative sign back
val negCv = withResource(Scalar.fromString("-")) { negativeSign =>
ColumnVector.fromScalar(negativeSign, cv.getRowCount.toInt)
}
val formated = withResource(resWithDecimalPart) { _ =>
val resWithNeg = withResource(negCv) { _ =>
ColumnVector.stringConcatenate(Array(negCv, resWithDecimalPart))
}
withResource(negativeCheck(cv)) { isNegative =>
withResource(resWithNeg) { _ =>
isNegative.ifElse(resWithNeg, resWithDecimalPart)
}
}
}
// handle null case
val anyNull = closeOnExcept(formated) { _ =>
cv.getNullCount > 0
}
val formatedWithNull = anyNull match {
case true => {
withResource(formated) { _ =>
withResource(cv.isNull) { isNull =>
withResource(Scalar.fromNull(DType.STRING)) { nullScalar =>
isNull.ifElse(nullScalar, formated)
}
}
}
}
case false => formated
}
formatedWithNull
}
override def doColumnar(lhs: GpuColumnVector, rhs: GpuScalar): ColumnVector = {
// get int d from rhs
if (!rhs.isValid || rhs.getValue.asInstanceOf[Int] < 0) {
return GpuColumnVector.columnVectorFromNull(lhs.getRowCount.toInt, StringType)
}
val d = rhs.getValue.asInstanceOf[Int]
x.dataType match {
case FloatType | DoubleType => {
val nanSymbol = DecimalFormatSymbols.getInstance(Locale.US).getNaN
// JDK 8's nan symbol is "�" ('\uFFFD'), which is also the jni kernel's nan symbol
// In higher JDK version, nan symbol is "NaN", so we need to handle it here.
if (nanSymbol == String.valueOf('\uFFFD')) {
CastStrings.fromFloatWithFormat(lhs.getBase, d)
} else {
withResource(Scalar.fromString(nanSymbol)) { nan =>
withResource(lhs.getBase.isNan) { isNan =>
withResource(CastStrings.fromFloatWithFormat(lhs.getBase, d)) { res =>
isNan.ifElse(nan, res)
}
}
}
}
}
case _ => {
formatNumberNonKernel(lhs.getBase, d)
}
}
}
override def doColumnar(lhs: GpuScalar, rhs: GpuColumnVector): ColumnVector = {
throw new UnsupportedOperationException()
}
override def doColumnar(lhs: GpuColumnVector, rhs: GpuColumnVector): ColumnVector = {
throw new UnsupportedOperationException()
}
override def doColumnar(numRows: Int, lhs: GpuScalar, rhs: GpuScalar): ColumnVector = {
withResource(GpuColumnVector.from(lhs, numRows, lhs.dataType)) { col =>
doColumnar(col, rhs)
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy