com.opengamma.strata.math.impl.TrigonometricFunctionUtils Maven / Gradle / Ivy
/*
* Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl;
import static com.opengamma.strata.math.impl.ComplexNumber.I;
import com.opengamma.strata.collect.ArgChecker;
/**
* Trigonometric utilities.
*/
public class TrigonometricFunctionUtils {
// CSOFF: JavadocMethod
private static final ComplexNumber NEGATIVE_I = new ComplexNumber(0, -1);
public static double acos(double x) {
return Math.acos(x);
}
/**
* arccos - the inverse of cos.
* @param z A complex number
* @return acos(z)
*/
public static ComplexNumber acos(ComplexNumber z) {
ArgChecker.notNull(z, "z");
return ComplexMathUtils.multiply(
NEGATIVE_I,
ComplexMathUtils.log(
ComplexMathUtils.add(
z,
ComplexMathUtils.sqrt(ComplexMathUtils.subtract(ComplexMathUtils.multiply(z, z), 1)))));
}
public static double acosh(double x) {
double y = x * x - 1;
ArgChecker.isTrue(y >= 0, "|x|>=1.0 for real solution");
return Math.log(x + Math.sqrt(x * x - 1));
}
public static ComplexNumber acosh(ComplexNumber z) {
ArgChecker.notNull(z, "z");
return ComplexMathUtils.log(
ComplexMathUtils.add(
z,
ComplexMathUtils.sqrt(ComplexMathUtils.subtract(ComplexMathUtils.multiply(z, z), 1))));
}
public static double asin(double x) {
return Math.asin(x);
}
public static ComplexNumber asin(ComplexNumber z) {
ArgChecker.notNull(z, "z");
return ComplexMathUtils.multiply(NEGATIVE_I,
ComplexMathUtils.log(
ComplexMathUtils.add(
ComplexMathUtils.multiply(I, z),
ComplexMathUtils.sqrt(ComplexMathUtils.subtract(1, ComplexMathUtils.multiply(z, z))))));
}
public static double asinh(double x) {
return Math.log(x + Math.sqrt(x * x + 1));
}
public static ComplexNumber asinh(ComplexNumber z) {
ArgChecker.notNull(z, "z");
return ComplexMathUtils.log(
ComplexMathUtils.add(
z,
ComplexMathUtils.sqrt(ComplexMathUtils.add(ComplexMathUtils.multiply(z, z), 1))));
}
public static double atan(double x) {
return Math.atan(x);
}
public static ComplexNumber atan(ComplexNumber z) {
ArgChecker.notNull(z, "z");
ComplexNumber iZ = ComplexMathUtils.multiply(z, I);
ComplexNumber half = new ComplexNumber(0, 0.5);
return ComplexMathUtils.multiply(
half,
ComplexMathUtils.log(ComplexMathUtils.divide(ComplexMathUtils.subtract(1, iZ), ComplexMathUtils.add(1, iZ))));
}
public static double atanh(double x) {
return 0.5 * Math.log((1 + x) / (1 - x));
}
public static ComplexNumber atanh(ComplexNumber z) {
ArgChecker.notNull(z, "z");
return ComplexMathUtils.multiply(
0.5,
ComplexMathUtils.log(ComplexMathUtils.divide(ComplexMathUtils.add(1, z), ComplexMathUtils.subtract(1, z))));
}
public static double cos(double x) {
return Math.cos(x);
}
public static ComplexNumber cos(ComplexNumber z) {
ArgChecker.notNull(z, "z");
double x = z.getReal();
double y = z.getImaginary();
return new ComplexNumber(Math.cos(x) * Math.cosh(y), -Math.sin(x) * Math.sinh(y));
}
public static double cosh(double x) {
return Math.cosh(x);
}
public static ComplexNumber cosh(ComplexNumber z) {
ArgChecker.notNull(z, "z");
return new ComplexNumber(
Math.cosh(z.getReal()) * Math.cos(z.getImaginary()), Math.sinh(z.getReal()) * Math.sin(z.getImaginary()));
}
public static double sin(double x) {
return Math.sin(x);
}
public static ComplexNumber sin(ComplexNumber z) {
ArgChecker.notNull(z, "z");
double x = z.getReal();
double y = z.getImaginary();
return new ComplexNumber(Math.sin(x) * Math.cosh(y), Math.cos(x) * Math.sinh(y));
}
public static double sinh(double x) {
return Math.sinh(x);
}
public static ComplexNumber sinh(ComplexNumber z) {
ArgChecker.notNull(z, "z");
return new ComplexNumber(
Math.sinh(z.getReal()) * Math.cos(z.getImaginary()), Math.cosh(z.getReal()) * Math.sin(z.getImaginary()));
}
public static double tan(double x) {
return Math.tan(x);
}
public static ComplexNumber tan(ComplexNumber z) {
ComplexNumber b = ComplexMathUtils.exp(ComplexMathUtils.multiply(ComplexMathUtils.multiply(I, 2), z));
return ComplexMathUtils.divide(
ComplexMathUtils.subtract(b, 1),
ComplexMathUtils.multiply(I, ComplexMathUtils.add(b, 1)));
}
public static double tanh(double x) {
return Math.tanh(x);
}
public static ComplexNumber tanh(ComplexNumber z) {
ComplexNumber z2 = ComplexMathUtils.exp(z);
ComplexNumber z3 = ComplexMathUtils.exp(ComplexMathUtils.multiply(z, -1));
return ComplexMathUtils.divide(ComplexMathUtils.subtract(z2, z3), ComplexMathUtils.add(z2, z3));
}
//-------------------------------------------------------------------------
// restricted constructor
private TrigonometricFunctionUtils() {
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy