All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.differentiation.ScalarFieldFirstOrderDifferentiator Maven / Gradle / Ivy

/*
 * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.differentiation;

import java.util.function.Function;

import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.math.MathException;

/**
 * Differentiates a scalar field (i.e. there is a scalar value for every point
 * in some vector space) with respect to the vector space using finite difference.
 * 

* For a function $y = f(\mathbf{x})$ where $\mathbf{x}$ is a n-dimensional * vector and $y$ is a scalar, this class produces a gradient function * $\mathbf{g}(\mathbf{x})$, i.e. a function that returns the gradient for each * point $\mathbf{x}$, where $\mathbf{g}$ is the n-dimensional vector * $\frac{dy}{dx_i}$. */ public class ScalarFieldFirstOrderDifferentiator implements Differentiator { private static final double DEFAULT_EPS = 1e-5; private static final double MIN_EPS = Math.sqrt(Double.MIN_NORMAL); private final double eps; private final double twoEps; private final FiniteDifferenceType differenceType; /** * Creates an instance using the default values of differencing type (central) and eps (10-5). */ public ScalarFieldFirstOrderDifferentiator() { this(FiniteDifferenceType.CENTRAL, DEFAULT_EPS); } /** * Creates an instance that approximates the derivative of a scalar function by finite difference. *

* If the size of the domain is very small or very large, consider re-scaling first. * If this value is too small, the result will most likely be dominated by noise. * Use around 10-5 times the domain size. * * @param differenceType the type, forward, backward or central. In most situations, central is best * @param eps the step size used to approximate the derivative */ public ScalarFieldFirstOrderDifferentiator(FiniteDifferenceType differenceType, double eps) { ArgChecker.notNull(differenceType, "differenceType"); ArgChecker.isTrue(eps >= MIN_EPS, "eps of {} is too small. Please choose a value > {}, such as 1e-5*size of domain", eps, MIN_EPS); this.differenceType = differenceType; this.eps = eps; this.twoEps = 2 * eps; } //------------------------------------------------------------------------- @Override public Function differentiate( Function function) { ArgChecker.notNull(function, "function"); switch (differenceType) { case FORWARD: return new Function() { @SuppressWarnings("synthetic-access") @Override public DoubleArray apply(DoubleArray x) { ArgChecker.notNull(x, "x"); double y = function.apply(x); return DoubleArray.of(x.size(), i -> { double up = function.apply(x.with(i, x.get(i) + eps)); return (up - y) / eps; }); } }; case CENTRAL: return new Function() { @SuppressWarnings("synthetic-access") @Override public DoubleArray apply(DoubleArray x) { ArgChecker.notNull(x, "x"); return DoubleArray.of(x.size(), i -> { double up = function.apply(x.with(i, x.get(i) + eps)); double down = function.apply(x.with(i, x.get(i) - eps)); return (up - down) / twoEps; }); } }; case BACKWARD: return new Function() { @SuppressWarnings("synthetic-access") @Override public DoubleArray apply(DoubleArray x) { ArgChecker.notNull(x, "x"); double y = function.apply(x); return DoubleArray.of(x.size(), i -> { double down = function.apply(x.with(i, x.get(i) - eps)); return (y - down) / eps; }); } }; default: throw new IllegalArgumentException("Can only handle forward, backward and central differencing"); } } //------------------------------------------------------------------------- @Override public Function differentiate( Function function, Function domain) { ArgChecker.notNull(function, "function"); ArgChecker.notNull(domain, "domain"); double[] wFwd = new double[] {-3. / twoEps, 4. / twoEps, -1. / twoEps}; double[] wCent = new double[] {-1. / twoEps, 0., 1. / twoEps}; double[] wBack = new double[] {1. / twoEps, -4. / twoEps, 3. / twoEps}; return new Function() { @SuppressWarnings("synthetic-access") @Override public DoubleArray apply(DoubleArray x) { ArgChecker.notNull(x, "x"); ArgChecker.isTrue(domain.apply(x), "point {} is not in the function domain", x.toString()); return DoubleArray.of(x.size(), i -> { double xi = x.get(i); DoubleArray xPlusOneEps = x.with(i, xi + eps); DoubleArray xMinusOneEps = x.with(i, xi - eps); double y0, y1, y2; double[] w; if (!domain.apply(xPlusOneEps)) { DoubleArray xMinusTwoEps = x.with(i, xi - twoEps); if (!domain.apply(xMinusTwoEps)) { throw new MathException("cannot get derivative at point " + x.toString() + " in direction " + i); } y0 = function.apply(xMinusTwoEps); y2 = function.apply(x); y1 = function.apply(xMinusOneEps); w = wBack; } else { double temp = function.apply(xPlusOneEps); if (!domain.apply(xMinusOneEps)) { y1 = temp; y0 = function.apply(x); y2 = function.apply(x.with(i, xi + twoEps)); w = wFwd; } else { y1 = 0; y2 = temp; y0 = function.apply(xMinusOneEps); w = wCent; } } double res = y0 * w[0] + y2 * w[2]; if (w[1] != 0) { res += y1 * w[1]; } return res; }); } }; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy