All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.differentiation.ScalarFirstOrderDifferentiator Maven / Gradle / Ivy

/*
 * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.differentiation;

import java.util.function.Function;

import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.math.MathException;

/**
 * Differentiates a scalar function with respect to its argument using finite difference.
 * 

* For a function $y = f(x)$ where $x$ and $y$ are scalars, this class produces * a gradient function $g(x)$, i.e. a function that returns the gradient for * each point $x$, where $g$ is the scalar $\frac{dy}{dx}$. */ public class ScalarFirstOrderDifferentiator implements Differentiator { private static final double DEFAULT_EPS = 1e-5; private static final double MIN_EPS = Math.sqrt(Double.MIN_NORMAL); private final double eps; private final double twoEps; private final FiniteDifferenceType differenceType; /** * Creates an instance using the default value of eps (10-5) and central differencing type. */ public ScalarFirstOrderDifferentiator() { this(FiniteDifferenceType.CENTRAL, DEFAULT_EPS); } /** * Creates an instance using the default value of eps (10-5). * * @param differenceType the differencing type to be used in calculating the gradient function */ public ScalarFirstOrderDifferentiator(FiniteDifferenceType differenceType) { this(differenceType, DEFAULT_EPS); } /** * Creates an instance. *

* If the size of the domain is very small or very large, consider re-scaling first. * If this value is too small, the result will most likely be dominated by noise. * Use around 10-5 times the domain size. * * @param differenceType the differencing type to be used in calculating the gradient function * @param eps the step size used to approximate the derivative */ public ScalarFirstOrderDifferentiator(FiniteDifferenceType differenceType, double eps) { ArgChecker.notNull(differenceType, "differenceType"); ArgChecker.isTrue(eps >= MIN_EPS, "eps of {} is too small. Please choose a value > {}, such as 1e-5*size of domain", eps, MIN_EPS); this.differenceType = differenceType; this.eps = eps; this.twoEps = 2 * eps; } //------------------------------------------------------------------------- @Override public Function differentiate(Function function) { ArgChecker.notNull(function, "function"); switch (differenceType) { case FORWARD: return new Function() { @SuppressWarnings("synthetic-access") @Override public Double apply(Double x) { ArgChecker.notNull(x, "x"); return (function.apply(x + eps) - function.apply(x)) / eps; } }; case CENTRAL: return new Function() { @SuppressWarnings("synthetic-access") @Override public Double apply(Double x) { ArgChecker.notNull(x, "x"); return (function.apply(x + eps) - function.apply(x - eps)) / twoEps; } }; case BACKWARD: return new Function() { @SuppressWarnings("synthetic-access") @Override public Double apply(Double x) { ArgChecker.notNull(x, "x"); return (function.apply(x) - function.apply(x - eps)) / eps; } }; default: throw new IllegalArgumentException("Can only handle forward, backward and central differencing"); } } //------------------------------------------------------------------------- @Override public Function differentiate( Function function, Function domain) { ArgChecker.notNull(function, "function"); ArgChecker.notNull(domain, "domain"); double[] wFwd = new double[] {-3. / twoEps, 4. / twoEps, -1. / twoEps}; double[] wCent = new double[] {-1. / twoEps, 0., 1. / twoEps}; double[] wBack = new double[] {1. / twoEps, -4. / twoEps, 3. / twoEps}; return new Function() { @SuppressWarnings("synthetic-access") @Override public Double apply(Double x) { ArgChecker.notNull(x, "x"); ArgChecker.isTrue(domain.apply(x), "point {} is not in the function domain", x.toString()); double[] y = new double[3]; double[] w; if (!domain.apply(x + eps)) { if (!domain.apply(x - eps)) { throw new MathException("cannot get derivative at point " + x.toString()); } y[0] = function.apply(x - twoEps); y[1] = function.apply(x - eps); y[2] = function.apply(x); w = wBack; } else { if (!domain.apply(x - eps)) { y[0] = function.apply(x); y[1] = function.apply(x + eps); y[2] = function.apply(x + twoEps); w = wFwd; } else { y[0] = function.apply(x - eps); y[2] = function.apply(x + eps); w = wCent; } } double res = y[0] * w[0] + y[2] * w[2]; if (w[1] != 0) { res += y[1] * w[1]; } return res; } }; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy