All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.differentiation.VectorFieldFirstOrderDifferentiator Maven / Gradle / Ivy

/*
 * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.differentiation;

import java.util.function.Function;

import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;
import com.opengamma.strata.math.MathException;

/**
 * Differentiates a vector field (i.e. there is a vector value for every point
 * in some vector space) with respect to the vector space using finite difference.
 * 

* For a function $\mathbf{y} = f(\mathbf{x})$ where $\mathbf{x}$ is a * n-dimensional vector and $\mathbf{y}$ is a m-dimensional vector, this class * produces the Jacobian function $\mathbf{J}(\mathbf{x})$, i.e. a function * that returns the Jacobian for each point $\mathbf{x}$, where * $\mathbf{J}$ is the $m \times n$ matrix $\frac{dy_i}{dx_j}$ */ public class VectorFieldFirstOrderDifferentiator implements Differentiator { private static final double DEFAULT_EPS = 1e-5; private final double eps; private final double twoEps; private final FiniteDifferenceType differenceType; /** * Creates an instance using the default value of eps (10-5) and central differencing type. */ public VectorFieldFirstOrderDifferentiator() { this(FiniteDifferenceType.CENTRAL, DEFAULT_EPS); } /** * Creates an instance using the default value of eps (10-5). * * @param differenceType the differencing type to be used in calculating the gradient function */ public VectorFieldFirstOrderDifferentiator(FiniteDifferenceType differenceType) { this(differenceType, DEFAULT_EPS); } /** * Creates an instance using the central differencing type. *

* If the size of the domain is very small or very large, consider re-scaling first. * If this value is too small, the result will most likely be dominated by noise. * Use around 10-5 times the domain size. * * @param eps the step size used to approximate the derivative */ public VectorFieldFirstOrderDifferentiator(double eps) { this(FiniteDifferenceType.CENTRAL, eps); } /** * Creates an instance. *

* If the size of the domain is very small or very large, consider re-scaling first. * If this value is too small, the result will most likely be dominated by noise. * Use around 10-5 times the domain size. * * @param differenceType the differencing type to be used in calculating the gradient function * @param eps the step size used to approximate the derivative */ public VectorFieldFirstOrderDifferentiator(FiniteDifferenceType differenceType, double eps) { ArgChecker.notNull(differenceType, "differenceType"); this.differenceType = differenceType; this.eps = eps; this.twoEps = 2 * eps; } //------------------------------------------------------------------------- @Override public Function differentiate(Function function) { ArgChecker.notNull(function, "function"); switch (differenceType) { case FORWARD: return new Function() { @SuppressWarnings("synthetic-access") @Override public DoubleMatrix apply(DoubleArray x) { ArgChecker.notNull(x, "x"); DoubleArray y = function.apply(x); int n = x.size(); int m = y.size(); double[][] res = new double[m][n]; for (int j = 0; j < n; j++) { double xj = x.get(j); DoubleArray up = function.apply(x.with(j, xj + eps)); for (int i = 0; i < m; i++) { res[i][j] = (up.get(i) - y.get(i)) / eps; } } return DoubleMatrix.copyOf(res); } }; case CENTRAL: return new Function() { @SuppressWarnings("synthetic-access") @Override public DoubleMatrix apply(DoubleArray x) { ArgChecker.notNull(x, "x"); DoubleArray y = function.apply(x); // need this unused evaluation to get size of y int n = x.size(); int m = y.size(); double[][] res = new double[m][n]; for (int j = 0; j < n; j++) { double xj = x.get(j); DoubleArray up = function.apply(x.with(j, xj + eps)); DoubleArray down = function.apply(x.with(j, xj - eps)); for (int i = 0; i < m; i++) { res[i][j] = (up.get(i) - down.get(i)) / twoEps; } } return DoubleMatrix.copyOf(res); } }; case BACKWARD: return new Function() { @SuppressWarnings("synthetic-access") @Override public DoubleMatrix apply(DoubleArray x) { ArgChecker.notNull(x, "x"); DoubleArray y = function.apply(x); int n = x.size(); int m = y.size(); double[][] res = new double[m][n]; for (int j = 0; j < n; j++) { double xj = x.get(j); DoubleArray down = function.apply(x.with(j, xj - eps)); for (int i = 0; i < m; i++) { res[i][j] = (y.get(i) - down.get(i)) / eps; } } return DoubleMatrix.copyOf(res); } }; default: throw new IllegalArgumentException("Can only handle forward, backward and central differencing"); } } //------------------------------------------------------------------------- @Override public Function differentiate( Function function, Function domain) { ArgChecker.notNull(function, "function"); ArgChecker.notNull(domain, "domain"); double[] wFwd = new double[] {-3., 4., -1.}; double[] wCent = new double[] {-1., 0., 1.}; double[] wBack = new double[] {1., -4., 3.}; return new Function() { @SuppressWarnings("synthetic-access") @Override public DoubleMatrix apply(DoubleArray x) { ArgChecker.notNull(x, "x"); ArgChecker.isTrue(domain.apply(x), "point {} is not in the function domain", x.toString()); DoubleArray mid = function.apply(x); // need this unused evaluation to get size of y int n = x.size(); int m = mid.size(); double[][] res = new double[m][n]; DoubleArray[] y = new DoubleArray[3]; double[] w; for (int j = 0; j < n; j++) { double xj = x.get(j); DoubleArray xPlusOneEps = x.with(j, xj + eps); DoubleArray xMinusOneEps = x.with(j, xj - eps); if (!domain.apply(xPlusOneEps)) { DoubleArray xMinusTwoEps = x.with(j, xj - twoEps); if (!domain.apply(xMinusTwoEps)) { throw new MathException("cannot get derivative at point " + x.toString() + " in direction " + j); } y[2] = mid; y[0] = function.apply(xMinusTwoEps); y[1] = function.apply(xMinusOneEps); w = wBack; } else { if (!domain.apply(xMinusOneEps)) { y[0] = mid; y[1] = function.apply(xPlusOneEps); y[2] = function.apply(x.with(j, xj + twoEps)); w = wFwd; } else { y[2] = function.apply(xPlusOneEps); y[0] = function.apply(xMinusOneEps); y[1] = mid; w = wCent; } } for (int i = 0; i < m; i++) { double sum = 0; for (int k = 0; k < 3; k++) { if (w[k] != 0.0) { sum += w[k] * y[k].get(i); } } res[i][j] = sum / twoEps; } } return DoubleMatrix.copyOf(res); } }; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy