All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.function.ConcatenatedVectorFunction Maven / Gradle / Ivy

/*
 * Copyright (C) 2014 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.function;

import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;

/**
 * For the set of $k$ vector functions $f_i: \mathbb{R}^{m_i} \to \mathbb{R}^{n_i} \quad x_i \mapsto f_i(x_i) = y_i$ 
 * this forms the function 
 * $f: \mathbb{R}^{m} \to \mathbb{R}^{n} \quad x_i \mapsto f(x) = y$ where $n = \sum_{i=1}^k n_i$ and  
 * $m = \sum_{i=1}^k m_i$ and $x = (x_1,x_2,\dots,x_k)$ \& $y = (y_1,y_2,\dots,y_k)$.
 **/
public class ConcatenatedVectorFunction extends VectorFunction {

  private final int[] xPartition;
  private final int[] yPartition;
  private final int nPartitions;
  private final VectorFunction[] functions;
  private final int sizeDom;
  private final int sizeRange;

  /**
   * Creates an instance.
   * 

* This creates the concatenated function, in the order that the sub functions are given. * * @param functions the sub functions */ public ConcatenatedVectorFunction(VectorFunction[] functions) { ArgChecker.noNulls(functions, "functions"); this.functions = functions; this.nPartitions = functions.length; this.xPartition = new int[nPartitions]; this.yPartition = new int[nPartitions]; int m = 0; int n = 0; for (int i = 0; i < nPartitions; i++) { xPartition[i] = functions[i].getLengthOfDomain(); yPartition[i] = functions[i].getLengthOfRange(); m += xPartition[i]; n += yPartition[i]; } this.sizeDom = m; this.sizeRange = n; } //------------------------------------------------------------------------- @Override public DoubleMatrix calculateJacobian(DoubleArray x) { ArgChecker.notNull(x, "x"); ArgChecker.isTrue( x.size() == getLengthOfDomain(), "Incorrect length of x. Is {} but should be {}", x.size(), getLengthOfDomain()); double[][] jac = new double[getLengthOfRange()][getLengthOfDomain()]; int posInput = 0; int pos1 = 0; int pos2 = 0; for (int i = 0; i < nPartitions; i++) { int nRows = yPartition[i]; int nCols = xPartition[i]; DoubleArray sub = x.subArray(posInput, posInput + nCols); DoubleMatrix subJac = functions[i].calculateJacobian(sub); if (nCols > 0) { for (int r = 0; r < nRows; r++) { System.arraycopy(subJac.toArrayUnsafe()[r], 0, jac[pos1++], pos2, nCols); } pos2 += nCols; } else { pos1 += nRows; } posInput += nCols; } return DoubleMatrix.copyOf(jac); } @Override public DoubleArray apply(DoubleArray x) { ArgChecker.notNull(x, "x"); ArgChecker.isTrue( x.size() == getLengthOfDomain(), "Incorrect length of x. Is {} but should be {}", x.size(), getLengthOfDomain()); double[] y = new double[getLengthOfRange()]; int posInput = 0; int posOutput = 0; //evaluate each function (with the appropriate sub vector) and concatenate the results for (int i = 0; i < nPartitions; i++) { int length = xPartition[i]; DoubleArray sub = x.subArray(posInput, posInput + length); DoubleArray eval = functions[i].apply(sub); eval.copyInto(y, posOutput); posInput += length; posOutput += eval.size(); } return DoubleArray.copyOf(y); } @Override public int getLengthOfDomain() { return sizeDom; } @Override public int getLengthOfRange() { return sizeRange; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy