All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.integration.GaussHermiteQuadratureIntegrator1D Maven / Gradle / Ivy

/*
 * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.integration;

import java.util.function.Function;

import com.opengamma.strata.collect.ArgChecker;

/**
 * Gauss-Hermite quadrature approximates the value of integrals of the form
 * $$
 * \begin{align*}
 * \int_{-\infty}^{\infty} e^{-x^2} g(x) dx
 * \end{align*}
 * $$
 * The weights and abscissas are generated by {@link GaussHermiteWeightAndAbscissaFunction}. 
 * 

* At present, this integrator can only be used for the limits $\pm\infty$. The * function to integrate is scaled in such a way as to allow any values for the * limits of integration. */ public class GaussHermiteQuadratureIntegrator1D extends GaussianQuadratureIntegrator1D { private static final Double[] LIMITS = new Double[] {Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY}; private static final GaussHermiteWeightAndAbscissaFunction GENERATOR = new GaussHermiteWeightAndAbscissaFunction(); /** * @param n The number of sample points to use in the integration */ public GaussHermiteQuadratureIntegrator1D(int n) { super(n, GENERATOR); } /** * {@inheritDoc} */ @Override public Double[] getLimits() { return LIMITS; } /** * {@inheritDoc} * The function $f(x)$ that is to be integrated is transformed into a form * suitable for this quadrature method using: * $$ * \begin{align*} * \int_{-\infty}^{\infty} f(x) dx * &= \int_{-\infty}^{\infty} f(x) e^{x^2} e^{-x^2} dx\\ * &= \int_{-\infty}^{\infty} g(x) e^{-x^2} dx * \end{align*} * $$ * @throws UnsupportedOperationException If the lower limit is not $-\infty$ or the upper limit is not $\infty$ */ @Override public Function getIntegralFunction(Function function, Double lower, Double upper) { ArgChecker.notNull(function, "function"); ArgChecker.notNull(lower, "lower"); ArgChecker.notNull(upper, "upper"); if (lower.equals(LIMITS[0]) && upper.equals(LIMITS[1])) { return new Function() { @Override public Double apply(Double x) { return Math.exp(x * x) * function.apply(x); } }; } throw new UnsupportedOperationException("Limits for this integration method are +/-infinity"); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy