All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.integration.GaussLaguerreQuadratureIntegrator1D Maven / Gradle / Ivy

/*
 * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.integration;

import java.util.function.Function;

/**
 * Gauss-Laguerre quadrature approximates the value of integrals of the form
 * $$
 * \begin{align*}
 * \int_{0}^{\infty} e^{-x}f(x) dx
 * \end{align*}
 * $$
 * The weights and abscissas are generated by {@link GaussLaguerreWeightAndAbscissaFunction}.
 * 

* The function to integrate is scaled in such a way as to allow any values for * the limits of integration. At present, this integrator can only be used for * the limits $[0, \infty]$. */ public class GaussLaguerreQuadratureIntegrator1D extends GaussianQuadratureIntegrator1D { private static final Double[] LIMITS = new Double[] {0., Double.POSITIVE_INFINITY}; /** * Creates an instance. * @param n the value */ public GaussLaguerreQuadratureIntegrator1D(int n) { super(n, new GaussLaguerreWeightAndAbscissaFunction()); } /** * Creates an instance. * * @param n the value * @param alpha the alpha */ public GaussLaguerreQuadratureIntegrator1D(int n, double alpha) { super(n, new GaussLaguerreWeightAndAbscissaFunction(alpha)); } @Override public Double[] getLimits() { return LIMITS; } /** * {@inheritDoc} * The function $f(x)$ that is to be integrated is transformed into a form * suitable for this quadrature method using: * $$ * \begin{align*} * \int_{0}^{\infty} f(x) dx * &= \int_{0}^{\infty} f(x) e^x e^{-x} dx\\ * &= \int_{0}^{\infty} g(x) e^{-x} dx * \end{align*} * $$ * @throws UnsupportedOperationException If the lower limit is not $-\infty$ or the upper limit is not $\infty$ */ @Override public Function getIntegralFunction(Function function, Double lower, Double upper) { if (lower.equals(LIMITS[0]) && upper.equals(LIMITS[1])) { return new Function() { @Override public Double apply(Double x) { return function.apply(x) * Math.exp(x); } }; } throw new UnsupportedOperationException("Limits for Gauss-Laguerre integration are 0 and +infinity"); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy