com.opengamma.strata.math.impl.integration.GaussLegendreQuadratureIntegrator1D Maven / Gradle / Ivy
/*
* Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.integration;
import java.util.function.Function;
import com.opengamma.strata.collect.ArgChecker;
/**
* Gauss-Legendre quadrature approximates the value of integrals of the form
* $$
* \begin{align*}
* \int_{-1}^{1} f(x) dx
* \end{align*}
* $$
* The weights and abscissas are generated by {@link GaussLegendreWeightAndAbscissaFunction}.
*
* The function to integrate is scaled in such a way as to allow any values for the limits of the integrals.
*/
public class GaussLegendreQuadratureIntegrator1D extends GaussianQuadratureIntegrator1D {
private static final Double[] LIMITS = new Double[] {-1., 1.};
private static final GaussLegendreWeightAndAbscissaFunction GENERATOR = new GaussLegendreWeightAndAbscissaFunction();
/**
* @param n The number of sample points to be used in the integration, not negative or zero
*/
public GaussLegendreQuadratureIntegrator1D(int n) {
super(n, GENERATOR);
}
@Override
public Double[] getLimits() {
return LIMITS;
}
/**
* {@inheritDoc}
* To evaluate an integral over $[a, b]$, a change of interval must be performed:
* $$
* \begin{align*}
* \int_a^b f(x)dx
* &= \frac{b - a}{2}\int_{-1}^1 f(\frac{b - a}{2} x + \frac{a + b}{2})dx\\
* &\approx \frac{b - a}{2}\sum_{i=1}^n w_i f(\frac{b - a}{2} x + \frac{a + b}{2})
* \end{align*}
* $$
*/
@Override
public Function getIntegralFunction(Function function, Double lower, Double upper) {
ArgChecker.notNull(function, "function");
ArgChecker.notNull(lower, "lower");
ArgChecker.notNull(upper, "upper");
double m = (upper - lower) / 2;
double c = (upper + lower) / 2;
return new Function() {
@Override
public Double apply(Double x) {
return m * function.apply(m * x + c);
}
};
}
}