com.opengamma.strata.math.impl.interpolation.LinearInterpolator Maven / Gradle / Ivy
/*
* Copyright (C) 2013 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.interpolation;
import java.util.Arrays;
import java.util.stream.IntStream;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.DoubleArrayMath;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;
/**
* Interpolate consecutive two points by a straight line.
*/
public class LinearInterpolator extends PiecewisePolynomialInterpolator {
private static final double ERROR = 1.e-13;
@Override
public PiecewisePolynomialResult interpolate(double[] xValues, double[] yValues) {
ArgChecker.notEmpty(xValues, "xValues");
ArgChecker.notEmpty(yValues, "yValues");
int nDataPts = xValues.length;
ArgChecker.isTrue(nDataPts > 1, "at least two data points required");
ArgChecker.isTrue(nDataPts == yValues.length, "xValues length = yValues length");
for (int i = 0; i < nDataPts; ++i) {
ArgChecker.isFalse(Double.isNaN(xValues[i]), "xData containing NaN");
ArgChecker.isFalse(Double.isInfinite(xValues[i]), "xData containing Infinity");
ArgChecker.isFalse(Double.isNaN(yValues[i]), "yData containing NaN");
ArgChecker.isFalse(Double.isInfinite(yValues[i]), "yData containing Infinity");
}
if (nDataPts == 1) {
return new PiecewisePolynomialResult(DoubleArray.copyOf(xValues), DoubleMatrix.filled(1, 1, yValues[0]), 1, 1);
}
double[] xValuesSrt = Arrays.copyOf(xValues, nDataPts);
double[] yValuesSrt = Arrays.copyOf(yValues, nDataPts);
DoubleArrayMath.sortPairs(xValuesSrt, yValuesSrt);
ArgChecker.noDuplicatesSorted(xValuesSrt, "xValues");
DoubleMatrix coefMatrix = solve(xValuesSrt, yValuesSrt);
for (int i = 0; i < coefMatrix.rowCount(); ++i) {
for (int j = 0; j < coefMatrix.columnCount(); ++j) {
ArgChecker.isFalse(Double.isNaN(coefMatrix.get(i, j)), "Too large input");
ArgChecker.isFalse(Double.isInfinite(coefMatrix.get(i, j)), "Too large input");
}
double ref = 0.;
double interval = xValuesSrt[i + 1] - xValuesSrt[i];
for (int j = 0; j < 2; ++j) {
ref += coefMatrix.get(i, j) * Math.pow(interval, 1 - j);
ArgChecker.isFalse(Double.isNaN(coefMatrix.get(i, j)), "Too large input");
ArgChecker.isFalse(Double.isInfinite(coefMatrix.get(i, j)), "Too large input");
}
double bound = Math.max(Math.abs(ref) + Math.abs(yValuesSrt[i + 1]), 1.e-1);
ArgChecker.isTrue(Math.abs(ref - yValuesSrt[i + 1]) < ERROR * bound, "Input is too large/small or data are not distinct enough");
}
return new PiecewisePolynomialResult(DoubleArray.copyOf(xValuesSrt), coefMatrix, coefMatrix.columnCount(), 1);
}
@Override
public PiecewisePolynomialResult interpolate(double[] xValues, double[][] yValuesMatrix) {
ArgChecker.notEmpty(xValues, "xValues");
ArgChecker.notEmpty(yValuesMatrix, "yValuesMatrix");
int nDataPts = xValues.length;
ArgChecker.isTrue(nDataPts > 1, "at least two data points required");
ArgChecker.isTrue(nDataPts == yValuesMatrix[0].length, "(xValues length = yValuesMatrix's row vector length)");
int dim = yValuesMatrix.length;
for (int i = 0; i < nDataPts; ++i) {
ArgChecker.isFalse(Double.isNaN(xValues[i]), "xData containing NaN");
ArgChecker.isFalse(Double.isInfinite(xValues[i]), "xData containing Infinity");
for (int j = 0; j < dim; ++j) {
ArgChecker.isFalse(Double.isNaN(yValuesMatrix[j][i]), "yValuesMatrix containing NaN");
ArgChecker.isFalse(Double.isInfinite(yValuesMatrix[j][i]), "yValuesMatrix containing Infinity");
}
}
double[] xValuesSrt = Arrays.copyOf(xValues, nDataPts);
int[] sortedPositions = IntStream.range(0, nDataPts).toArray();
DoubleArrayMath.sortPairs(xValuesSrt, sortedPositions);
ArgChecker.noDuplicatesSorted(xValuesSrt, "xValues");
DoubleMatrix[] coefMatrix = new DoubleMatrix[dim];
for (int i = 0; i < dim; ++i) {
double[] yValuesSrt = DoubleArrayMath.reorderedCopy(yValuesMatrix[i], sortedPositions);
coefMatrix[i] = solve(xValuesSrt, yValuesSrt);
for (int k = 0; k < xValuesSrt.length - 1; ++k) {
double ref = 0.;
double interval = xValuesSrt[k + 1] - xValuesSrt[k];
for (int j = 0; j < 2; ++j) {
ref += coefMatrix[i].get(k, j) * Math.pow(interval, 1 - j);
ArgChecker.isFalse(Double.isNaN(coefMatrix[i].get(k, j)), "Too large input");
ArgChecker.isFalse(Double.isInfinite(coefMatrix[i].get(k, j)), "Too large input");
}
double bound = Math.max(Math.abs(ref) + Math.abs(yValuesSrt[k + 1]), 1.e-1);
ArgChecker.isTrue(Math.abs(ref - yValuesSrt[k + 1]) < ERROR * bound, "Input is too large/small or data points are too close");
}
}
int nIntervals = coefMatrix[0].rowCount();
int nCoefs = coefMatrix[0].columnCount();
double[][] resMatrix = new double[dim * nIntervals][nCoefs];
for (int i = 0; i < nIntervals; ++i) {
for (int j = 0; j < dim; ++j) {
resMatrix[dim * i + j] = coefMatrix[j].row(i).toArray();
}
}
return new PiecewisePolynomialResult(DoubleArray.copyOf(xValuesSrt), DoubleMatrix.copyOf(resMatrix), nCoefs, dim);
}
@Override
public PiecewisePolynomialResultsWithSensitivity interpolateWithSensitivity(double[] xValues, double[] yValues) {
ArgChecker.notEmpty(xValues, "xValues");
ArgChecker.notEmpty(yValues, "yValues");
int nDataPts = xValues.length;
ArgChecker.isTrue(nDataPts > 1, "at least two data points required");
ArgChecker.isTrue(nDataPts == yValues.length, "xValues length = yValues length");
for (int i = 0; i < nDataPts; ++i) {
ArgChecker.isFalse(Double.isNaN(xValues[i]), "xData containing NaN");
ArgChecker.isFalse(Double.isInfinite(xValues[i]), "xData containing Infinity");
ArgChecker.isFalse(Double.isNaN(yValues[i]), "yData containing NaN");
ArgChecker.isFalse(Double.isInfinite(yValues[i]), "yData containing Infinity");
}
double[] xValuesSrt = Arrays.copyOf(xValues, nDataPts);
double[] yValuesSrt = Arrays.copyOf(yValues, nDataPts);
DoubleArrayMath.sortPairs(xValuesSrt, yValuesSrt);
ArgChecker.noDuplicatesSorted(xValuesSrt, "xValues");
DoubleMatrix[] res = solveSensitivity(xValuesSrt, yValuesSrt);
DoubleMatrix coefMatrix = res[nDataPts - 1];
DoubleMatrix[] coefSenseMatrix = Arrays.copyOf(res, nDataPts - 1);
for (int i = 0; i < coefMatrix.rowCount(); ++i) {
for (int j = 0; j < coefMatrix.columnCount(); ++j) {
ArgChecker.isFalse(Double.isNaN(coefMatrix.get(i, j)), "Too large input");
ArgChecker.isFalse(Double.isInfinite(coefMatrix.get(i, j)), "Too large input");
}
double ref = 0.;
double interval = xValuesSrt[i + 1] - xValuesSrt[i];
for (int j = 0; j < 2; ++j) {
ref += coefMatrix.get(i, j) * Math.pow(interval, 1 - j);
ArgChecker.isFalse(Double.isNaN(coefMatrix.get(i, j)), "Too large input");
ArgChecker.isFalse(Double.isInfinite(coefMatrix.get(i, j)), "Too large input");
}
double bound = Math.max(Math.abs(ref) + Math.abs(yValuesSrt[i + 1]), 1.e-1);
ArgChecker.isTrue(Math.abs(ref - yValuesSrt[i + 1]) < ERROR * bound,
"Input is too large/small or data are not distinct enough");
}
return new PiecewisePolynomialResultsWithSensitivity(
DoubleArray.ofUnsafe(xValuesSrt),
coefMatrix,
coefMatrix.columnCount(),
1,
coefSenseMatrix);
}
/**
* @param xValues X values of data
* @param yValues Y values of data
* @return Coefficient matrix whose i-th row vector is {a1, a0} of f(x) = a1 * (x-x_i) + a0 for the i-th interval
*/
private DoubleMatrix solve(final double[] xValues, final double[] yValues) {
final int nDataPts = xValues.length;
double[][] res = new double[nDataPts - 1][2];
for (int i = 0; i < nDataPts - 1; ++i) {
res[i][1] = yValues[i];
res[i][0] = (yValues[i + 1] - yValues[i]) / (xValues[i + 1] - xValues[i]);
}
return DoubleMatrix.copyOf(res);
}
/**
* @param xValues X values of data
* @param yValues Y values of data
* @return Coefficient matrix and coefficient sensitivity matrices
*/
private DoubleMatrix[] solveSensitivity(double[] xValues, double[] yValues) {
int nDataPts = xValues.length;
DoubleMatrix[] res = new DoubleMatrix[nDataPts];
double[][] coef = new double[nDataPts - 1][2];
for (int i = 0; i < nDataPts - 1; ++i) {
double[][] coefSensi = new double[2][nDataPts];
double intervalInv = 1d / (xValues[i + 1] - xValues[i]);
coef[i][1] = yValues[i];
coef[i][0] = (yValues[i + 1] - yValues[i]) * intervalInv;
coefSensi[1][i] = 1d;
coefSensi[0][i] = -intervalInv;
coefSensi[0][i + 1] = intervalInv;
res[i] = DoubleMatrix.ofUnsafe(coefSensi);
}
res[nDataPts - 1] = DoubleMatrix.ofUnsafe(coef);
return res;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy