All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.interpolation.NaturalSplineInterpolator Maven / Gradle / Ivy

/*
 * Copyright (C) 2013 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.interpolation;

import java.util.Arrays;
import java.util.stream.IntStream;

import com.google.common.primitives.Doubles;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.DoubleArrayMath;
import com.opengamma.strata.collect.array.DoubleMatrix;

/**
 * Natural cubic spline interpolation. 
 * 

* C2 cubic spline interpolator with the natural endpoint condition, i.e., the second derivative values are zero * at the first data point and the last data point. */ public class NaturalSplineInterpolator extends PiecewisePolynomialInterpolator { private CubicSplineSolver _solver; /** * Constructor. */ public NaturalSplineInterpolator() { _solver = new CubicSplineNaturalSolver(); } /** * * @param inherit the solver */ public NaturalSplineInterpolator(final CubicSplineSolver inherit) { _solver = inherit; } /** * @param xValues X values of data * @param yValues Y values of data * @return {@link PiecewisePolynomialResult} containing knots, coefficients of piecewise polynomials, number of intervals, degree of polynomials, dimension of spline */ @Override public PiecewisePolynomialResult interpolate(final double[] xValues, final double[] yValues) { ArgChecker.notNull(xValues, "xValues"); ArgChecker.notNull(yValues, "yValues"); ArgChecker.isTrue(xValues.length == yValues.length, "xValues length = yValues length"); ArgChecker.isTrue(xValues.length > 1, "Data points should be more than 1"); final int nDataPts = xValues.length; for (int i = 0; i < nDataPts; ++i) { ArgChecker.isFalse(Double.isNaN(xValues[i]), "xData containing NaN"); ArgChecker.isFalse(Double.isInfinite(xValues[i]), "xData containing Infinity"); ArgChecker.isFalse(Double.isNaN(yValues[i]), "yData containing NaN"); ArgChecker.isFalse(Double.isInfinite(yValues[i]), "yData containing Infinity"); } double[] xValuesSrt = Arrays.copyOf(xValues, nDataPts); double[] yValuesSrt = Arrays.copyOf(yValues, nDataPts); DoubleArrayMath.sortPairs(xValuesSrt, yValuesSrt); ArgChecker.noDuplicatesSorted(xValuesSrt, "xValues"); final DoubleMatrix coefMatrix = this._solver.solve(xValuesSrt, yValuesSrt); final int nCoefs = coefMatrix.columnCount(); final int nInts = this._solver.getKnotsMat1D(xValuesSrt).size() - 1; for (int i = 0; i < nInts; ++i) { for (int j = 0; j < nCoefs; ++j) { ArgChecker.isFalse(Double.isNaN(coefMatrix.get(i, j)), "Too large input"); ArgChecker.isFalse(Double.isInfinite(coefMatrix.get(i, j)), "Too large input"); } } return new PiecewisePolynomialResult(this._solver.getKnotsMat1D(xValuesSrt), coefMatrix, nCoefs, 1); } /** * @param xValues X values of data * @param yValuesMatrix Y values of data, where NumberOfRow defines dimension of the spline * @return {@link PiecewisePolynomialResult} containing knots, coefficients of piecewise polynomials, number of intervals, degree of polynomials, dimension of spline */ @Override public PiecewisePolynomialResult interpolate(final double[] xValues, final double[][] yValuesMatrix) { ArgChecker.notNull(xValues, "xValues"); ArgChecker.notNull(yValuesMatrix, "yValuesMatrix"); ArgChecker.isTrue(xValues.length == yValuesMatrix[0].length, "(xValues length = yValuesMatrix's row vector length)"); ArgChecker.isTrue(xValues.length > 1, "Data points should be more than 1"); final int nDataPts = xValues.length; final int dim = yValuesMatrix.length; for (int i = 0; i < nDataPts; ++i) { ArgChecker.isFalse(Double.isNaN(xValues[i]), "xData containing NaN"); ArgChecker.isFalse(Double.isInfinite(xValues[i]), "xData containing Infinity"); for (int j = 0; j < dim; ++j) { ArgChecker.isFalse(Double.isNaN(yValuesMatrix[j][i]), "yValuesMatrix containing NaN"); ArgChecker.isFalse(Double.isInfinite(yValuesMatrix[j][i]), "yValuesMatrix containing Infinity"); } } double[] xValuesSrt = Arrays.copyOf(xValues, nDataPts); int[] sortedPositions = IntStream.range(0, nDataPts).toArray(); DoubleArrayMath.sortPairs(xValuesSrt, sortedPositions); ArgChecker.noDuplicatesSorted(xValuesSrt, "xValues"); double[][] yValuesMatrixSrt = new double[dim][nDataPts]; for (int i = 0; i < dim; ++i) { yValuesMatrixSrt[i] = DoubleArrayMath.reorderedCopy(yValuesMatrix[i], sortedPositions); } DoubleMatrix[] coefMatrix = this._solver.solveMultiDim(xValuesSrt, DoubleMatrix.copyOf(yValuesMatrixSrt)); final int nIntervals = coefMatrix[0].rowCount(); final int nCoefs = coefMatrix[0].columnCount(); double[][] resMatrix = new double[dim * nIntervals][nCoefs]; for (int i = 0; i < nIntervals; ++i) { for (int j = 0; j < dim; ++j) { resMatrix[dim * i + j] = coefMatrix[j].row(i).toArray(); } } for (int i = 0; i < dim * nIntervals; ++i) { for (int j = 0; j < nCoefs; ++j) { ArgChecker.isFalse(Double.isNaN(resMatrix[i][j]), "Too large input"); ArgChecker.isFalse(Double.isInfinite(resMatrix[i][j]), "Too large input"); } } return new PiecewisePolynomialResult(this._solver.getKnotsMat1D(xValuesSrt), DoubleMatrix.copyOf(resMatrix), nCoefs, dim); } @Override public PiecewisePolynomialResultsWithSensitivity interpolateWithSensitivity(final double[] xValues, final double[] yValues) { ArgChecker.notNull(xValues, "xValues"); ArgChecker.notNull(yValues, "yValues"); ArgChecker.isTrue(xValues.length == yValues.length, "(xValues length = yValues length)"); ArgChecker.isTrue(xValues.length > 1, "Data points should be more than 1"); final int nDataPts = xValues.length; final int nYdata = yValues.length; for (int i = 0; i < nDataPts; ++i) { ArgChecker.isFalse(Double.isNaN(xValues[i]), "xData containing NaN"); ArgChecker.isFalse(Double.isInfinite(xValues[i]), "xData containing Infinity"); } for (int i = 0; i < nYdata; ++i) { ArgChecker.isFalse(Double.isNaN(yValues[i]), "yData containing NaN"); ArgChecker.isFalse(Double.isInfinite(yValues[i]), "yData containing Infinity"); } ArgChecker.noDuplicates(xValues, "xValues"); final DoubleMatrix[] resMatrix = this._solver.solveWithSensitivity(xValues, yValues); final int len = resMatrix.length; for (int k = 0; k < len; k++) { DoubleMatrix m = resMatrix[k]; final int rows = m.rowCount(); final int cols = m.columnCount(); for (int i = 0; i < rows; ++i) { for (int j = 0; j < cols; ++j) { ArgChecker.isTrue(Doubles.isFinite(m.get(i, j)), "Matrix contains a NaN or infinite"); } } } final DoubleMatrix coefMatrix = resMatrix[0]; final DoubleMatrix[] coefSenseMatrix = new DoubleMatrix[len - 1]; System.arraycopy(resMatrix, 1, coefSenseMatrix, 0, len - 1); final int nCoefs = coefMatrix.columnCount(); return new PiecewisePolynomialResultsWithSensitivity(this._solver.getKnotsMat1D(xValues), coefMatrix, nCoefs, 1, coefSenseMatrix); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy