com.opengamma.strata.math.impl.interpolation.PiecewiseCubicHermiteSplineInterpolatorWithSensitivity Maven / Gradle / Ivy
/*
* Copyright (C) 2013 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.interpolation;
import static com.opengamma.strata.math.MathUtils.pow2;
import java.util.Arrays;
import com.google.common.primitives.Doubles;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.DoubleArrayMath;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;
/**
* C1 cubic interpolation preserving monotonicity based on
* Fritsch, F. N.; Carlson, R. E. (1980)
* "Monotone Piecewise Cubic Interpolation", SIAM Journal on Numerical Analysis 17 (2): 238–246.
* Fritsch, F. N. and Butland, J. (1984)
* "A method for constructing local monotone piecewise cubic interpolants", SIAM Journal on Scientific and Statistical Computing 5 (2): 300-304.
*
* For interpolation without node sensitivity, use {@link PiecewiseCubicHermiteSplineInterpolator}
*/
public class PiecewiseCubicHermiteSplineInterpolatorWithSensitivity extends PiecewisePolynomialInterpolator {
/** interpolator without sensitivity **/
private static final PiecewiseCubicHermiteSplineInterpolator INTERP = new PiecewiseCubicHermiteSplineInterpolator();
@Override
public PiecewisePolynomialResultsWithSensitivity interpolateWithSensitivity(double[] xValues, double[] yValues) {
ArgChecker.notNull(xValues, "xValues");
ArgChecker.notNull(yValues, "yValues");
ArgChecker.isTrue(xValues.length == yValues.length, "xValues length = yValues length");
ArgChecker.isTrue(xValues.length > 1, "Data points should be more than 1");
int nDataPts = xValues.length;
for (int i = 0; i < nDataPts; ++i) {
ArgChecker.isTrue(Double.isFinite(xValues[i]), "xData is not finite");
ArgChecker.isTrue(Double.isFinite(yValues[i]), "yData is not finite");
}
double[] xValuesSrt = Arrays.copyOf(xValues, nDataPts);
double[] yValuesSrt = Arrays.copyOf(yValues, nDataPts);
DoubleArrayMath.sortPairs(xValuesSrt, yValuesSrt);
ArgChecker.noDuplicatesSorted(xValuesSrt, "xValues");
DoubleMatrix[] temp = solve(xValuesSrt, yValuesSrt);
// check the matrices
int n = temp.length;
for (int k = 0; k < n; k++) {
DoubleMatrix m = temp[k];
int rows = m.rowCount();
int cols = m.columnCount();
for (int i = 0; i < rows; ++i) {
for (int j = 0; j < cols; ++j) {
ArgChecker.isTrue(Doubles.isFinite(m.get(i, j)), "Matrix contains a NaN or infinite");
}
}
}
// copy
DoubleMatrix coefMatrix = temp[0];
DoubleMatrix[] coefMatrixSense = new DoubleMatrix[n - 1];
System.arraycopy(temp, 1, coefMatrixSense, 0, n - 1);
return new PiecewisePolynomialResultsWithSensitivity(DoubleArray.copyOf(xValuesSrt), coefMatrix, 4, 1, coefMatrixSense);
}
/**
* @param xValues X values of data
* @param yValues Y values of data
* @return Coefficient matrix whose i-th row vector is {a3, a2, a1, a0} of f(x) = a3 * (x-x_i)^3 + a2 * (x-x_i)^2 +... for the i-th interval
*/
private DoubleMatrix[] solve(double[] xValues, double[] yValues) {
int n = xValues.length;
double[][] coeff = new double[n - 1][4];
double[] h = new double[n - 1];
double[] delta = new double[n - 1];
DoubleMatrix[] res = new DoubleMatrix[n];
for (int i = 0; i < n - 1; ++i) {
h[i] = xValues[i + 1] - xValues[i];
delta[i] = (yValues[i + 1] - yValues[i]) / h[i];
}
if (n == 2) {
coeff[0][2] = delta[0];
coeff[0][3] = yValues[0];
double[][] coeffSense = new double[4][2];
coeffSense[2][1] = 1d / h[0];
coeffSense[2][0] = -1d / h[0];
coeffSense[3][0] = 1d;
res[1] = DoubleMatrix.copyOf(coeffSense);
} else {
SlopeFinderResults temp = slopeFinder(h, delta, yValues);
DoubleArray d = temp.getSlopes();
double[][] dDy = temp.getSlopeJacobian().toArray();
// form up the coefficient matrix
for (int i = 0; i < n - 1; ++i) {
coeff[i][0] = (d.get(i) - 2 * delta[i] + d.get(i + 1)) / h[i] / h[i]; // b
coeff[i][1] = (3 * delta[i] - 2. * d.get(i) - d.get(i + 1)) / h[i]; // c
coeff[i][2] = d.get(i);
coeff[i][3] = yValues[i];
}
double[][] bDy = new double[n - 1][n];
double[][] cDy = new double[n - 1][n];
for (int i = 0; i < n - 1; i++) {
double invH = 1 / h[i];
double invH2 = invH * invH;
double invH3 = invH * invH2;
cDy[i][i] = -3 * invH2;
cDy[i][i + 1] = 3 * invH2;
bDy[i][i] = 2 * invH3;
bDy[i][i + 1] = -2 * invH3;
for (int j = 0; j < n; j++) {
cDy[i][j] -= (2 * dDy[i][j] + dDy[i + 1][j]) * invH;
bDy[i][j] += (dDy[i][j] + dDy[i + 1][j]) * invH2;
}
}
// Now we have to pack this into an array of DoubleMatrix - my kingdom for a tensor class
for (int k = 0; k < n - 1; k++) {
double[][] coeffSense = new double[4][];
coeffSense[0] = bDy[k];
coeffSense[1] = cDy[k];
coeffSense[2] = dDy[k];
coeffSense[3] = new double[n];
coeffSense[3][k] = 1.0;
res[k + 1] = DoubleMatrix.copyOf(coeffSense);
}
}
res[0] = DoubleMatrix.copyOf(coeff);
return res;
}
private class SlopeFinderResults {
private final DoubleArray _d;
private final DoubleMatrix _dDy;
public SlopeFinderResults(DoubleArray d, DoubleMatrix dDy) {
// this is a private class - don't do the normal checks on inputs
_d = d;
_dDy = dDy;
}
public DoubleArray getSlopes() {
return _d;
}
public DoubleMatrix getSlopeJacobian() {
return _dDy;
}
}
// Finds the first derivatives at knots and their sensitivity to delta
private SlopeFinderResults slopeFinder(double[] h, double[] delta, double[] y) {
final int n = y.length;
double[] invDelta = new double[n - 1];
double[] invDelta2 = new double[n - 1];
double[] invH = new double[n - 1];
for (int i = 0; i < (n - 1); i++) {
invDelta[i] = 1 / delta[i];
invDelta2[i] = invDelta[i] * invDelta[i];
invH[i] = 1 / h[i];
}
double[] d = new double[n];
double[][] jac = new double[n][n];
// internal points
for (int i = 1; i < n - 1; ++i) {
if (delta[i] * delta[i - 1] > 0.) {
double w1 = 2. * h[i] + h[i - 1];
double w2 = h[i] + 2. * h[i - 1];
double w12 = w1 + w2;
d[i] = w12 / (w1 * invDelta[i - 1] + w2 * invDelta[i]);
double z1 = d[i] * d[i] / w12;
jac[i][i - 1] = -w1 * invH[i - 1] * invDelta2[i - 1] * z1;
jac[i][i] = (w1 * invH[i - 1] * invDelta2[i - 1] - w2 * invH[i] * invDelta2[i]) * z1;
jac[i][i + 1] = w2 * invH[i] * invDelta2[i] * z1;
} else if (delta[i] == 0 ^ delta[i - 1] == 0) {
// d is zero, so we don't explicitly set it
double w1 = 2. * h[i] + h[i - 1];
double w2 = h[i] + 2. * h[i - 1];
double w12 = w1 + w2;
double z2 = 0.5 * w12 / pow2(w1 * delta[i] + w2 * delta[i - 1]);
jac[i][i - 1] = -w1 * invH[i - 1] * delta[i] * delta[i] * z2;
jac[i][i] = (w1 * invH[i - 1] * delta[i] * delta[i] - w2 * invH[i] * delta[i - 1] * delta[i - 1]) * z2;
jac[i][i + 1] = w2 * invH[i] * delta[i - 1] * delta[i - 1] * z2;
}
}
// fill in end points
double[] temp = endpointSlope(h[0], h[1], delta[0], delta[1], false);
d[0] = temp[0];
for (int i = 0; i < 3; i++) {
jac[0][i] = temp[i + 1];
}
temp = endpointSlope(h[n - 2], h[n - 3], delta[n - 2], delta[n - 3], true);
d[n - 1] = temp[0];
for (int i = 1; i < 4; i++) {
jac[n - 1][n - i] = temp[i];
}
return new SlopeFinderResults(DoubleArray.copyOf(d), DoubleMatrix.copyOf(jac));
}
// First derivative at end point and its sensitivity to delta
private double[] endpointSlope(double h1, double h2, double del1, double del2, boolean rightSide) {
double[] res = new double[4];
if (del1 == 0.0) { // quick exist for particular edge case
// d and dDy3 are both zero - no need to explicitly set
if (del2 == 0) {
res[1] = -(2 * h1 + h2) / h1 / (h1 + h2);
if (h1 > 2 * h2) {
res[2] = 3 / h1;
} else {
res[2] = (h1 + h2) / h1 / h2;
}
} else {
res[1] = -1.5 / h1;
res[2] = -res[1];
}
if (rightSide) {
res[1] = -res[1];
res[2] = -res[2];
}
return res;
}
// This value is used in the clauses - may not be the returned value
double d = ((2. * h1 + h2) * del1 - h1 * del2) / (h1 + h2);
if (Math.signum(d) != Math.signum(del1)) {
// again d is now set to zero
if (Math.abs(d) < 1e-15) {
res[1] = -(2 * h1 + h2) / h1 / (h1 + h2);
res[2] = (h1 + h2) / h1 / h2;
res[3] = -h1 / h2 / (h1 + h2);
}
} else if (Math.signum(del1) != Math.signum(del2) && Math.abs(d) > 3. * Math.abs(del1)) {
res[0] = 3 * del1;
res[1] = -3 / h1;
res[2] = -res[1];
} else {
res[0] = d;
res[1] = -(2 * h1 + h2) / h1 / (h1 + h2);
res[2] = (h1 + h2) / h1 / h2;
res[3] = -h1 / h2 / (h1 + h2);
}
if (rightSide) {
for (int i = 1; i < 4; i++) {
res[i] = -res[i];
}
}
return res;
}
@Override
public PiecewisePolynomialResult interpolate(final double[] xValues, final double[] yValues) {
return INTERP.interpolate(xValues, yValues);
}
@Override
public PiecewisePolynomialResult interpolate(double[] xValues, double[][] yValuesMatrix) {
return INTERP.interpolate(xValues, yValuesMatrix);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy