com.opengamma.strata.math.impl.interpolation.PiecewisePolynomialInterpolator2D Maven / Gradle / Ivy
/*
* Copyright (C) 2013 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.interpolation;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;
/**
* Abstract class for interpolations based on 2d piecewise polynomial functions .
*/
public abstract class PiecewisePolynomialInterpolator2D {
/**
* Given a set of data points (x0Values_i, x1Values_j, yValues_{ij}), 2d spline interpolation
* is returned such that f(x0Values_i, x1Values_j) = yValues_{ij}.
* @param x0Values the values
* @param x1Values the values
* @param yValues the values
* @return {@link PiecewisePolynomialResult2D} containing positions of knots in x0 direction,
* positions of knots in x1 direction, coefficients of interpolant,
* number of intervals in x0 direction, number of intervals in x1 direction, order of polynomial function
*/
public abstract PiecewisePolynomialResult2D interpolate(double[] x0Values, double[] x1Values, double[][] yValues);
/**
* @param x0Values the values
* @param x1Values the values
* @param yValues the values
* @param x0Keys the keys
* @param x1Keys the keys
* @return Values of 2D interpolant at (x0Key_i, x1Keys_j)
*/
public DoubleMatrix interpolate(
double[] x0Values,
double[] x1Values,
double[][] yValues,
double[] x0Keys,
double[] x1Keys) {
ArgChecker.notNull(x0Keys, "x0Keys");
ArgChecker.notNull(x1Keys, "x1Keys");
int n0Keys = x0Keys.length;
int n1Keys = x1Keys.length;
for (int i = 0; i < n0Keys; ++i) {
ArgChecker.isFalse(Double.isNaN(x0Keys[i]), "x0Keys containing NaN");
ArgChecker.isFalse(Double.isInfinite(x0Keys[i]), "x0Keys containing Infinity");
}
for (int i = 0; i < n1Keys; ++i) {
ArgChecker.isFalse(Double.isNaN(x1Keys[i]), "x1Keys containing NaN");
ArgChecker.isFalse(Double.isInfinite(x1Keys[i]), "x1Keys containing Infinity");
}
PiecewisePolynomialResult2D result = this.interpolate(x0Values, x1Values, yValues);
DoubleArray knots0 = result.getKnots0();
DoubleArray knots1 = result.getKnots1();
int nKnots0 = knots0.size();
int nKnots1 = knots1.size();
double[][] res = new double[n0Keys][n1Keys];
for (int i = 0; i < n0Keys; ++i) {
for (int j = 0; j < n1Keys; ++j) {
int ind0 = 0;
int ind1 = 0;
for (int k = 1; k < nKnots0 - 1; ++k) {
if (x0Keys[i] >= knots0.get(k)) {
ind0 = k;
}
}
for (int k = 1; k < nKnots1 - 1; ++k) {
if (x1Keys[j] >= knots1.get(k)) {
ind1 = k;
}
}
res[i][j] = getValue(result.getCoefs()[ind0][ind1], x0Keys[i], x1Keys[j], knots0.get(ind0), knots1.get(ind1));
ArgChecker.isFalse(Double.isInfinite(res[i][j]), "Too large input");
ArgChecker.isFalse(Double.isNaN(res[i][j]), "Too large input");
}
}
return DoubleMatrix.copyOf(res);
}
/**
* @param x0Values the values
* @param x1Values the values
* @param yValues the values
* @param x0Key the key
* @param x1Key the key
* @return Value of 2D interpolant at (x0Key, x1Key)
*/
public double interpolate(double[] x0Values, double[] x1Values, double[][] yValues, double x0Key, double x1Key) {
PiecewisePolynomialResult2D result = this.interpolate(x0Values, x1Values, yValues);
ArgChecker.isFalse(Double.isNaN(x0Key), "x0Key containing NaN");
ArgChecker.isFalse(Double.isInfinite(x0Key), "x0Key containing Infinity");
ArgChecker.isFalse(Double.isNaN(x1Key), "x1Key containing NaN");
ArgChecker.isFalse(Double.isInfinite(x1Key), "x1Key containing Infinity");
DoubleArray knots0 = result.getKnots0();
DoubleArray knots1 = result.getKnots1();
int nKnots0 = knots0.size();
int nKnots1 = knots1.size();
int ind0 = 0;
int ind1 = 0;
for (int k = 1; k < nKnots0 - 1; ++k) {
if (x0Key >= knots0.get(k)) {
ind0 = k;
}
}
for (int i = 1; i < nKnots1 - 1; ++i) {
if (x1Key >= knots1.get(i)) {
ind1 = i;
}
}
double res = getValue(result.getCoefs()[ind0][ind1], x0Key, x1Key, knots0.get(ind0), knots1.get(ind1));
ArgChecker.isFalse(Double.isInfinite(res), "Too large input");
ArgChecker.isFalse(Double.isNaN(res), "Too large input");
return res;
}
/**
* @param coefMat the coefMat
* @param x0 the x0
* @param x1 the x1
* @param leftKnot0 the leftKnot0
* @param leftKnot1 the leftKnot1
* @return sum_{i=0}^{order0-1} sum_{j=0}^{order1-1} coefMat_{ij} (x0-leftKnots0)^{order0-1-i} (x1-leftKnots1)^{order0-1-j}
*/
protected double getValue(DoubleMatrix coefMat, double x0, double x1, double leftKnot0, double leftKnot1) {
int order0 = coefMat.rowCount();
int order1 = coefMat.columnCount();
double x0Mod = x0 - leftKnot0;
double x1Mod = x1 - leftKnot1;
double res = 0.;
for (int i = 0; i < order0; ++i) {
for (int j = 0; j < order1; ++j) {
res += coefMat.get(order0 - i - 1, order1 - j - 1) * Math.pow(x0Mod, i) * Math.pow(x1Mod, j);
}
}
return res;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy