All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.interpolation.PiecewisePolynomialInterpolator2D Maven / Gradle / Ivy

/*
 * Copyright (C) 2013 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.interpolation;

import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;

/**
 * Abstract class for interpolations based on 2d piecewise polynomial functions .
 */
public abstract class PiecewisePolynomialInterpolator2D {

  /**
   * Given a set of data points (x0Values_i, x1Values_j, yValues_{ij}), 2d spline interpolation
   * is returned such that f(x0Values_i, x1Values_j) = yValues_{ij}.
   * @param x0Values  the values
   * @param x1Values  the values
   * @param yValues  the values
   * @return {@link PiecewisePolynomialResult2D} containing positions of knots in x0 direction,
   *   positions of knots in x1 direction, coefficients of interpolant, 
   *   number of intervals in x0 direction, number of intervals in x1 direction, order of polynomial function
   */
  public abstract PiecewisePolynomialResult2D interpolate(double[] x0Values, double[] x1Values, double[][] yValues);

  /**
   * @param x0Values  the values
   * @param x1Values  the values
   * @param yValues  the values
   * @param x0Keys  the keys
   * @param x1Keys  the keys
   * @return Values of 2D interpolant at (x0Key_i, x1Keys_j) 
   */
  public DoubleMatrix interpolate(
      double[] x0Values,
      double[] x1Values,
      double[][] yValues,
      double[] x0Keys,
      double[] x1Keys) {

    ArgChecker.notNull(x0Keys, "x0Keys");
    ArgChecker.notNull(x1Keys, "x1Keys");

    int n0Keys = x0Keys.length;
    int n1Keys = x1Keys.length;

    for (int i = 0; i < n0Keys; ++i) {
      ArgChecker.isFalse(Double.isNaN(x0Keys[i]), "x0Keys containing NaN");
      ArgChecker.isFalse(Double.isInfinite(x0Keys[i]), "x0Keys containing Infinity");
    }
    for (int i = 0; i < n1Keys; ++i) {
      ArgChecker.isFalse(Double.isNaN(x1Keys[i]), "x1Keys containing NaN");
      ArgChecker.isFalse(Double.isInfinite(x1Keys[i]), "x1Keys containing Infinity");
    }

    PiecewisePolynomialResult2D result = this.interpolate(x0Values, x1Values, yValues);

    DoubleArray knots0 = result.getKnots0();
    DoubleArray knots1 = result.getKnots1();
    int nKnots0 = knots0.size();
    int nKnots1 = knots1.size();

    double[][] res = new double[n0Keys][n1Keys];

    for (int i = 0; i < n0Keys; ++i) {
      for (int j = 0; j < n1Keys; ++j) {
        int ind0 = 0;
        int ind1 = 0;

        for (int k = 1; k < nKnots0 - 1; ++k) {
          if (x0Keys[i] >= knots0.get(k)) {
            ind0 = k;
          }
        }
        for (int k = 1; k < nKnots1 - 1; ++k) {
          if (x1Keys[j] >= knots1.get(k)) {
            ind1 = k;
          }
        }
        res[i][j] = getValue(result.getCoefs()[ind0][ind1], x0Keys[i], x1Keys[j], knots0.get(ind0), knots1.get(ind1));
        ArgChecker.isFalse(Double.isInfinite(res[i][j]), "Too large input");
        ArgChecker.isFalse(Double.isNaN(res[i][j]), "Too large input");
      }
    }

    return DoubleMatrix.copyOf(res);
  }

  /**
   * @param x0Values  the values
   * @param x1Values  the values
   * @param yValues  the values
   * @param x0Key  the key
   * @param x1Key  the key
   * @return Value of 2D interpolant at (x0Key, x1Key) 
   */
  public double interpolate(double[] x0Values, double[] x1Values, double[][] yValues, double x0Key, double x1Key) {

    PiecewisePolynomialResult2D result = this.interpolate(x0Values, x1Values, yValues);
    ArgChecker.isFalse(Double.isNaN(x0Key), "x0Key containing NaN");
    ArgChecker.isFalse(Double.isInfinite(x0Key), "x0Key containing Infinity");
    ArgChecker.isFalse(Double.isNaN(x1Key), "x1Key containing NaN");
    ArgChecker.isFalse(Double.isInfinite(x1Key), "x1Key containing Infinity");

    DoubleArray knots0 = result.getKnots0();
    DoubleArray knots1 = result.getKnots1();
    int nKnots0 = knots0.size();
    int nKnots1 = knots1.size();

    int ind0 = 0;
    int ind1 = 0;

    for (int k = 1; k < nKnots0 - 1; ++k) {
      if (x0Key >= knots0.get(k)) {
        ind0 = k;
      }
    }

    for (int i = 1; i < nKnots1 - 1; ++i) {
      if (x1Key >= knots1.get(i)) {
        ind1 = i;
      }
    }
    double res = getValue(result.getCoefs()[ind0][ind1], x0Key, x1Key, knots0.get(ind0), knots1.get(ind1));

    ArgChecker.isFalse(Double.isInfinite(res), "Too large input");
    ArgChecker.isFalse(Double.isNaN(res), "Too large input");

    return res;
  }

  /**
   * @param coefMat  the coefMat
   * @param x0  the x0
   * @param x1  the x1
   * @param leftKnot0  the leftKnot0
   * @param leftKnot1  the leftKnot1
   * @return sum_{i=0}^{order0-1} sum_{j=0}^{order1-1} coefMat_{ij} (x0-leftKnots0)^{order0-1-i} (x1-leftKnots1)^{order0-1-j}
   */
  protected double getValue(DoubleMatrix coefMat, double x0, double x1, double leftKnot0, double leftKnot1) {

    int order0 = coefMat.rowCount();
    int order1 = coefMat.columnCount();
    double x0Mod = x0 - leftKnot0;
    double x1Mod = x1 - leftKnot1;
    double res = 0.;

    for (int i = 0; i < order0; ++i) {
      for (int j = 0; j < order1; ++j) {
        res += coefMat.get(order0 - i - 1, order1 - j - 1) * Math.pow(x0Mod, i) * Math.pow(x1Mod, j);
      }
    }

    return res;
  }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy