com.opengamma.strata.math.impl.interpolation.SmithWilsonCurveFunction Maven / Gradle / Ivy
/*
* Copyright (C) 2017 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.interpolation;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.math.impl.FunctionUtils;
/**
* Smith-Wilson curve function.
*
* The curve represents the discount factor values as a function of time.
*
* The curve is controlled by {@code omega}, {@code alpha} and {@code weights}:
* {@code omega} is related to the ultimate forward rate (UFR) by {@code omega = log(1 + UFR)},
* the {@code alpha} parameter determines the rate of convergence to the UFR,
* and the {@code weights} are the parameters to be calibrated to market data.
*/
public class SmithWilsonCurveFunction {
/**
* Default implementation with UFR = 4.2%
*/
public static final SmithWilsonCurveFunction DEFAULT = SmithWilsonCurveFunction.of(0.042);
/**
* The omega parameter.
*/
private final double omega;
/**
* Creates an instance with UFR.
*
* @param ufr the UFR
* @return the instance
*/
public static SmithWilsonCurveFunction of(double ufr) {
return new SmithWilsonCurveFunction(ufr);
}
// private constructor
private SmithWilsonCurveFunction(double ufr) {
this.omega = Math.log(1d + ufr);
}
//-------------------------------------------------------------------------
/**
* Computes the gap from the UFR at x value.
*
* The {@code nodes} must be sorted in ascending order and coherent to {@code weights}.
*
* @param x the x value
* @param alpha the alpha parameter
* @param nodes the nodes
* @param weights the weights
* @return the gap
*/
public static double gap(double x, double alpha, DoubleArray nodes, DoubleArray weights) {
int size = nodes.size();
ArgChecker.isTrue(size == weights.size(), "nodes and weights must be the same size");
double num = 1d;
double den = 0d;
for (int i = 0; i < size; ++i) {
num += alpha * nodes.get(i) * weights.get(i);
den += Math.sinh(alpha * nodes.get(i)) * weights.get(i);
}
return alpha / Math.abs(1d - num * Math.exp(alpha * x) / den);
}
//-------------------------------------------------------------------------
/**
* Evaluates the Smith-Wilson curve function at a x value.
*
* The {@code nodes} must be sorted in ascending order and coherent to {@code weights}.
*
* @param x the x value
* @param alpha the alpha parameter
* @param nodes the nodes
* @param weights the weights
* @return the value
*/
public double value(double x, double alpha, DoubleArray nodes, DoubleArray weights) {
int size = nodes.size();
ArgChecker.isTrue(size == weights.size(), "nodes and weights must be the same size");
double res = 1d;
int bound = x < nodes.get(0) ? 0 : FunctionUtils.getLowerBoundIndex(nodes, x) + 1;
for (int i = 0; i < bound; ++i) {
res += weights.get(i) * wilsonFunctionLeft(x, alpha, nodes.get(i));
}
for (int i = bound; i < size; ++i) {
res += weights.get(i) * wilsonFunctionRight(x, alpha, nodes.get(i));
}
res *= Math.exp(-omega * x);
return res;
}
/**
* Computes the gradient of the Smith-Wilson curve function at a x value.
*
* The {@code nodes} must be sorted in ascending order and coherent to {@code weights}.
*
* @param x the x value
* @param alpha the alpha parameter
* @param nodes the nodes
* @param weights the weights
* @return the gradient
*/
public double firstDerivative(double x, double alpha, DoubleArray nodes, DoubleArray weights) {
int size = nodes.size();
ArgChecker.isTrue(size == weights.size(), "nodes and weights must be the same size");
double res = -omega;
int bound = x < nodes.get(0) ? 0 : FunctionUtils.getLowerBoundIndex(nodes, x) + 1;
for (int i = 0; i < bound; ++i) {
res += weights.get(i) * wilsonFunctionLeftDerivative(x, alpha, nodes.get(i));
}
for (int i = bound; i < size; ++i) {
res += weights.get(i) * wilsonFunctionRightDerivative(x, alpha, nodes.get(i));
}
res *= Math.exp(-omega * x);
return res;
}
/**
* Computes the sensitivity of the Smith-Wilson curve function to weights parameters at a x value.
*
* The {@code nodes} must be sorted in ascending order.
*
* @param x the x value
* @param alpha the alpha parameter
* @param nodes the nodes
* @return the value
*/
public DoubleArray parameterSensitivity(double x, double alpha, DoubleArray nodes) {
int size = nodes.size();
double[] res = new double[size];
double expOmega = Math.exp(-omega * x);
int bound = x < nodes.get(0) ? 0 : FunctionUtils.getLowerBoundIndex(nodes, x) + 1;
for (int i = 0; i < bound; ++i) {
res[i] = expOmega * wilsonFunctionLeft(x, alpha, nodes.get(i));
}
for (int i = bound; i < size; ++i) {
res[i] = expOmega * wilsonFunctionRight(x, alpha, nodes.get(i));
}
return DoubleArray.ofUnsafe(res);
}
//-------------------------------------------------------------------------
// x < node
private double wilsonFunctionRight(double x, double alpha, double node) {
double alphaX = alpha * x;
return alphaX - Math.exp(-alpha * node) * Math.sinh(alphaX);
}
// x < node, includes derivative of Math.exp(-omega * x)
private double wilsonFunctionRightDerivative(double x, double alpha, double node) {
double alphaX = alpha * x;
double expAlphaNode = Math.exp(-alpha * node);
return -omega * (alphaX - expAlphaNode * Math.sinh(alphaX)) + alpha * (1d - expAlphaNode * Math.cosh(alphaX));
}
// x > node
private double wilsonFunctionLeft(double x, double alpha, double node) {
double alphaNode = alpha * node;
return alphaNode - Math.exp(-alpha * x) * Math.sinh(alphaNode);
}
// x > node, includes derivative of Math.exp(-omega * x)
private double wilsonFunctionLeftDerivative(double x, double alpha, double node) {
double alphaNode = alpha * node;
double expAlphaX = Math.exp(-alpha * x);
return -omega * (alphaNode - expAlphaX * Math.sinh(alphaNode)) + alpha * expAlphaX * Math.sinh(alphaNode);
}
}