All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.interpolation.WeightingFunction Maven / Gradle / Ivy

/*
 * Copyright (C) 2012 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.interpolation;

import org.joda.convert.FromString;

import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.named.Named;

/**
 * A function to allow a smooth weighing between two functions.
 * 

* If two functions f(x) and g(x) fit the data set (x_i,y_i) at the points x_a and x_b * (i.e. f(x_a) = g(x_a) = y_a and f(x_b) = g(x_b) = y_b), then a weighted function * h(x) = w(x)f(x) + (1-w(x))*g(x) with 0 <= w(x) <= 1 will also fit the points a and b */ public interface WeightingFunction extends Named { /** * Obtains an instance from the specified unique name. * * @param uniqueName the unique name * @return the index * @throws IllegalArgumentException if the name is not known */ @FromString public static WeightingFunction of(String uniqueName) { ArgChecker.notNull(uniqueName, "uniqueName"); if (uniqueName.equals(LinearWeightingFunction.INSTANCE.getName())) { return LinearWeightingFunction.INSTANCE; } if (uniqueName.equals(SineWeightingFunction.INSTANCE.getName())) { return SineWeightingFunction.INSTANCE; } throw new IllegalArgumentException("WeightingFunction name not found: " + uniqueName); } //------------------------------------------------------------------------- /** * Gets the function weight for point x, based on the lower bound index. * * @param xs the independent data points * @param index the index of the data point below x * @param x the x-point to find the weight for * @return the weight */ public default double getWeight(double[] xs, int index, double x) { ArgChecker.notNull(xs, "strikes"); ArgChecker.notNegative(index, "index"); ArgChecker.isTrue(index <= xs.length - 2, "index cannot be larger than {}, have {}", xs.length - 2, index); double y = (xs[index + 1] - x) / (xs[index + 1] - xs[index]); return getWeight(y); } /** * Gets the weight. *

* The condition that must be satisfied by all weight functions is that * w(1) = 1, w(0) = 0 and dw(y)/dy <= 0 - i.e. w(y) is monotonically decreasing. * * @param y a value between 0 and 1 * @return the weight */ public abstract double getWeight(double y); }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy