com.opengamma.strata.math.impl.minimization.ParameterLimitsTransform Maven / Gradle / Ivy
/*
* Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.minimization;
/**
* Interface for objects containing functions that can transform constrained model parameters into unconstrained fitting parameters and vice versa. It also
* provides functions that will provide the gradient of the functions that perform these transformations. Let y be the model parameter and
* yStar the transformed (fitting) parameter, then we write y* = f(y)
*/
public interface ParameterLimitsTransform {
/** Types of the limits. */
public enum LimitType {
/** Greater than limit. */
GREATER_THAN,
/** Less than limit. */
LESS_THAN
}
/**
* A function to transform a constrained model parameter (y) to an unconstrained fitting parameter (y*) - i.e. y* = f(y)
* @param x Model parameter
* @return Fitting parameter
*/
public abstract double transform(double x);
// /**
// * A function to transform a set of constrained model parameters to a set of unconstrained fitting parameters
// * @param x Model parameter
// * @return Fitting parameter
// */
// double[] transform(double[] x);
/**
* A function to transform an unconstrained fitting parameter (y*) to a constrained model parameter (y) - i.e. y = f^-1(y*)
* @param y Fitting parameter
* @return Model parameter
*/
public abstract double inverseTransform(double y);
/**
* The gradient of the function used to transform from a model parameter that is only allows
* to take certain values, to a fitting parameter that can take any value.
* @param x Model parameter
* @return the gradient
*/
public abstract double transformGradient(double x);
/**
* The gradient of the function used to transform from a fitting parameter that can take any value,
* to a model parameter that is only allows to take certain values.
* @param y fitting parameter
* @return the gradient
*/
public abstract double inverseTransformGradient(double y);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy