com.opengamma.strata.math.impl.minimization.SumToOne Maven / Gradle / Ivy
/*
* Copyright (C) 2012 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.minimization;
import java.util.HashMap;
import java.util.Map;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;
/**
* For a set of N-1 "fit" parameters, produces N "model" parameters that sum to one.
*/
public class SumToOne {
private static final double TOL = 1e-9;
private static final Map SETS = new HashMap<>();
private final int[][] _set;
private final int _n;
/**
* For a set of N-1 "fit" parameters, produces N "model" parameters that sum to one.
* @param n The number of "model" parameters, N
*/
public SumToOne(int n) {
_set = getSet(n);
_n = n;
}
/**
* Transform from the N-1 "fit" parameters to the N "model" parameters.
* @param fitParms The N-1 "fit" parameters
* @return The N "model" parameters
*/
public double[] transform(double[] fitParms) {
ArgChecker.isTrue(fitParms.length == _n - 1, "length of fitParms is {}, but must be {} ", fitParms.length, _n - 1);
double[] s2 = new double[_n - 1];
double[] c2 = new double[_n - 1];
for (int j = 0; j < _n - 1; j++) {
double temp = Math.sin(fitParms[j]);
temp *= temp;
s2[j] = temp;
c2[j] = 1.0 - temp;
}
double[] res = new double[_n];
for (int i = 0; i < _n; i++) {
double prod = 1.0;
for (int j = 0; j < _n - 1; j++) {
if (_set[i][j] == 1) {
prod *= s2[j];
} else if (_set[i][j] == -1) {
prod *= c2[j];
}
}
res[i] = prod;
}
return res;
}
/**
* Transform from the N-1 "fit" parameters to the N "model" parameters.
* @param fitParms The N-1 "fit" parameters
* @return The N "model" parameters
*/
public DoubleArray transform(DoubleArray fitParms) {
return DoubleArray.copyOf(transform(fitParms.toArray()));
}
/**
* Inverse transform from the N "model" parameters to the N-1 "fit" parameters.
* Used mainly to find the start position of a optimisation routine.
*
* @param modelParms The N "model" parameters. These must sum to one
* @return The N-1 "fit" parameters
*/
public double[] inverseTransform(double[] modelParms) {
ArgChecker.isTrue(modelParms.length == _n, "length of modelParms is {}, but must be {} ", modelParms.length, _n);
double[] res = new double[_n - 1];
double[] cum = new double[_n + 1];
double sum = 0.0;
for (int i = 0; i < _n; i++) {
sum += modelParms[i];
cum[i + 1] = sum;
}
ArgChecker.isTrue(Math.abs(sum - 1.0) < TOL, "sum of elements is {}. Must be 1.0", sum);
cal(cum, 1.0, 0, _n, 0, res);
for (int i = 0; i < _n - 1; i++) {
res[i] = Math.asin(Math.sqrt(res[i]));
}
return res;
}
/**
* Inverse transform from the N "model" parameters to the N-1 "fit" parameters.
* Used mainly to find the start position of a optimisation routine.
*
* @param modelParms The N "model" parameters. These must sum to one
* @return The N-1 "fit" parameters
*/
public DoubleArray inverseTransform(DoubleArray modelParms) {
return DoubleArray.copyOf(inverseTransform(modelParms.toArray()));
}
/**
* The N by N-1 Jacobian matrix between the N "model" parameters (that sum to one) and the N-1 "fit" parameters.
* @param fitParms The N-1 "fit" parameters
* @return The N by N-1 Jacobian matrix
*/
public double[][] jacobian(double[] fitParms) {
ArgChecker.isTrue(fitParms.length == _n - 1, "length of fitParms is {}, but must be {} ", fitParms.length, _n - 1);
double[] sin = new double[_n - 1];
double[] cos = new double[_n - 1];
for (int j = 0; j < _n - 1; j++) {
sin[j] = Math.sin(fitParms[j]);
cos[j] = Math.cos(fitParms[j]);
}
double[] a = new double[_n];
for (int i = 0; i < _n; i++) {
double prod = 1.0;
for (int j = 0; j < _n - 1; j++) {
if (_set[i][j] == 1) {
prod *= sin[j];
} else if (_set[i][j] == -1) {
prod *= cos[j];
}
}
a[i] = 2 * prod * prod;
}
double[][] res = new double[_n][_n - 1];
for (int i = 0; i < _n; i++) {
for (int j = 0; j < _n - 1; j++) {
if (_set[i][j] == 1 && a[i] != 0.0) {
res[i][j] = a[i] * cos[j] / sin[j];
} else if (_set[i][j] == -1 && a[i] != 0.0) {
res[i][j] = -a[i] * sin[j] / cos[j];
}
}
}
return res;
}
/**
* The N by N-1 Jacobian matrix between the N "model" parameters (that sum to one) and the N-1 "fit" parameters.
* @param fitParms The N-1 "fit" parameters
* @return The N by N-1 Jacobian matrix
*/
public DoubleMatrix jacobian(DoubleArray fitParms) {
return DoubleMatrix.copyOf(jacobian(fitParms.toArray()));
}
private void cal(double[] cum, double factor, int d, int n, int p1, double[] res) {
if (n == 1) {
return;
}
int n1 = n / 2;
int n2 = n - n1;
double s = (cum[p1 + n1] - cum[p1]) * factor;
double c = 1 - s;
res[d] = s;
cal(cum, factor / s, d + 1, n1, p1, res);
cal(cum, factor / c, d + n1, n2, p1 + n1, res);
}
protected static int[][] getSet(int n) {
ArgChecker.isTrue(n > 1, "need n>1");
if (SETS.containsKey(n)) {
return SETS.get(n);
}
int[][] res = new int[n][];
switch (n) {
case 2:
res[0] = new int[] {1};
res[1] = new int[] {-1};
break;
case 3:
res[0] = new int[] {1, 0};
res[1] = new int[] {-1, 1};
res[2] = new int[] {-1, -1};
break;
case 4:
res[0] = new int[] {1, 1, 0};
res[1] = new int[] {1, -1, 0};
res[2] = new int[] {-1, 0, 1};
res[3] = new int[] {-1, 0, -1};
break;
default:
int n1 = n / 2;
int n2 = n - n1;
int[][] set1 = getSet(n1);
int[][] set2 = (n1 == n2 ? set1 : getSet(n2));
res = new int[n][n - 1];
for (int i = 0; i < n1; i++) {
res[i][0] = 1;
System.arraycopy(set1[i], 0, res[i], 1, n1 - 1);
}
for (int i = 0; i < n2; i++) {
res[i + n1][0] = -1;
System.arraycopy(set2[i], 0, res[i + n1], n1, n2 - 1);
}
}
SETS.put(n, res);
return res;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy