com.opengamma.strata.math.impl.regression.OrdinaryLeastSquaresRegression Maven / Gradle / Ivy
/*
* Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.regression;
import org.apache.commons.math3.distribution.TDistribution;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;
import com.opengamma.strata.math.impl.matrix.CommonsMatrixAlgebra;
/**
*
*/
//CSOFF: JavadocMethod
public class OrdinaryLeastSquaresRegression extends LeastSquaresRegression {
private static final Logger log = LoggerFactory.getLogger(OrdinaryLeastSquaresRegression.class);
private CommonsMatrixAlgebra _algebra = new CommonsMatrixAlgebra();
@Override
public LeastSquaresRegressionResult regress(double[][] x, double[][] weights, double[] y, boolean useIntercept) {
if (weights != null) {
log.info("Weights were provided for OLS regression: they will be ignored");
}
return regress(x, y, useIntercept);
}
public LeastSquaresRegressionResult regress(double[][] x, double[] y, boolean useIntercept) {
checkData(x, y);
double[][] indep = addInterceptVariable(x, useIntercept);
double[] dep = new double[y.length];
for (int i = 0; i < y.length; i++) {
dep[i] = y[i];
}
DoubleMatrix matrix = DoubleMatrix.copyOf(indep);
DoubleArray vector = DoubleArray.copyOf(dep);
DoubleMatrix transpose = _algebra.getTranspose(matrix);
DoubleMatrix betasVector = (DoubleMatrix) _algebra.multiply(
_algebra.multiply(_algebra.getInverse(_algebra.multiply(transpose, matrix)), transpose), vector);
double[] yModel = super.writeArrayAsVector(((DoubleMatrix) _algebra.multiply(matrix, betasVector)).toArray());
double[] betas = super.writeArrayAsVector(betasVector.toArray());
return getResultWithStatistics(x, y, betas, yModel, transpose, matrix, useIntercept);
}
private LeastSquaresRegressionResult getResultWithStatistics(
double[][] x,
double[] y,
double[] betas,
double[] yModel,
DoubleMatrix transpose,
DoubleMatrix matrix,
boolean useIntercept) {
double yMean = 0.;
for (double y1 : y) {
yMean += y1;
}
yMean /= y.length;
double totalSumOfSquares = 0.;
double errorSumOfSquares = 0.;
int n = x.length;
int k = betas.length;
double[] residuals = new double[n];
double[] stdErrorBetas = new double[k];
double[] tStats = new double[k];
double[] pValues = new double[k];
for (int i = 0; i < n; i++) {
totalSumOfSquares += (y[i] - yMean) * (y[i] - yMean);
residuals[i] = y[i] - yModel[i];
errorSumOfSquares += residuals[i] * residuals[i];
}
double regressionSumOfSquares = totalSumOfSquares - errorSumOfSquares;
double[][] covarianceBetas = convertArray(_algebra.getInverse(_algebra.multiply(transpose, matrix)).toArray());
double rSquared = regressionSumOfSquares / totalSumOfSquares;
double adjustedRSquared = 1. - (1 - rSquared) * (n - 1.) / (n - k);
double meanSquareError = errorSumOfSquares / (n - k);
TDistribution studentT = new TDistribution(n - k);
for (int i = 0; i < k; i++) {
stdErrorBetas[i] = Math.sqrt(meanSquareError * covarianceBetas[i][i]);
tStats[i] = betas[i] / stdErrorBetas[i];
pValues[i] = 1 - studentT.cumulativeProbability(Math.abs(tStats[i]));
}
return new LeastSquaresRegressionResult(
betas, residuals, meanSquareError, stdErrorBetas, rSquared, adjustedRSquared, tStats, pValues, useIntercept);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy