com.opengamma.strata.math.impl.regression.WeightedLeastSquaresRegression Maven / Gradle / Ivy
/*
* Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.regression;
import org.apache.commons.math3.distribution.TDistribution;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.DiagonalMatrix;
import org.apache.commons.math3.linear.RealMatrix;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;
import com.opengamma.strata.math.impl.matrix.CommonsMatrixAlgebra;
/**
*
*/
//CSOFF: JavadocMethod
public class WeightedLeastSquaresRegression extends LeastSquaresRegression {
private static final Logger log = LoggerFactory.getLogger(WeightedLeastSquaresRegression.class);
private static CommonsMatrixAlgebra ALGEBRA = new CommonsMatrixAlgebra();
@Override
public LeastSquaresRegressionResult regress(double[][] x, double[][] weights, double[] y, boolean useIntercept) {
if (weights == null) {
throw new IllegalArgumentException("Cannot perform WLS regression without an array of weights");
}
checkData(x, weights, y);
log
.info("Have a two-dimensional array for what should be a one-dimensional array of weights. " +
"The weights used in this regression will be the diagonal elements only");
double[] w = new double[weights.length];
for (int i = 0; i < w.length; i++) {
w[i] = weights[i][i];
}
return regress(x, w, y, useIntercept);
}
public LeastSquaresRegressionResult regress(double[][] x, double[] weights, double[] y, boolean useIntercept) {
if (weights == null) {
throw new IllegalArgumentException("Cannot perform WLS regression without an array of weights");
}
checkData(x, weights, y);
double[][] dep = addInterceptVariable(x, useIntercept);
double[] w = new double[weights.length];
for (int i = 0; i < y.length; i++) {
w[i] = weights[i];
}
DoubleMatrix matrix = DoubleMatrix.copyOf(dep);
DoubleArray vector = DoubleArray.copyOf(y);
RealMatrix wDiag = new DiagonalMatrix(w);
DoubleMatrix transpose = ALGEBRA.getTranspose(matrix);
DoubleMatrix wDiagTimesMatrix = DoubleMatrix.ofUnsafe(wDiag.multiply(
new Array2DRowRealMatrix(matrix.toArrayUnsafe())).getData());
DoubleMatrix tmp = (DoubleMatrix) ALGEBRA.multiply(
ALGEBRA.getInverse(ALGEBRA.multiply(transpose, wDiagTimesMatrix)), transpose);
DoubleMatrix wTmpTimesDiag =
DoubleMatrix.copyOf(wDiag.preMultiply(new Array2DRowRealMatrix(tmp.toArrayUnsafe())).getData());
DoubleMatrix betasVector = (DoubleMatrix) ALGEBRA.multiply(wTmpTimesDiag, vector);
double[] yModel = super.writeArrayAsVector(((DoubleMatrix) ALGEBRA.multiply(matrix, betasVector)).toArray());
double[] betas = super.writeArrayAsVector(betasVector.toArray());
return getResultWithStatistics(x, convertArray(wDiag.getData()), y, betas, yModel, transpose, matrix, useIntercept);
}
private LeastSquaresRegressionResult getResultWithStatistics(
double[][] x, double[][] w, double[] y, double[] betas, double[] yModel,
DoubleMatrix transpose, DoubleMatrix matrix, boolean useIntercept) {
double yMean = 0.;
for (double y1 : y) {
yMean += y1;
}
yMean /= y.length;
double totalSumOfSquares = 0.;
double errorSumOfSquares = 0.;
int n = x.length;
int k = betas.length;
double[] residuals = new double[n];
double[] standardErrorsOfBeta = new double[k];
double[] tStats = new double[k];
double[] pValues = new double[k];
for (int i = 0; i < n; i++) {
totalSumOfSquares += w[i][i] * (y[i] - yMean) * (y[i] - yMean);
residuals[i] = y[i] - yModel[i];
errorSumOfSquares += w[i][i] * residuals[i] * residuals[i];
}
double regressionSumOfSquares = totalSumOfSquares - errorSumOfSquares;
double[][] covarianceBetas = convertArray(ALGEBRA.getInverse(ALGEBRA.multiply(transpose, matrix)).toArray());
double rSquared = regressionSumOfSquares / totalSumOfSquares;
double adjustedRSquared = 1. - (1 - rSquared) * (n - 1) / (n - k);
double meanSquareError = errorSumOfSquares / (n - k);
TDistribution studentT = new TDistribution(n - k);
for (int i = 0; i < k; i++) {
standardErrorsOfBeta[i] = Math.sqrt(meanSquareError * covarianceBetas[i][i]);
tStats[i] = betas[i] / standardErrorsOfBeta[i];
pValues[i] = 1 - studentT.cumulativeProbability(Math.abs(tStats[i]));
}
return new WeightedLeastSquaresRegressionResult(
betas, residuals, meanSquareError, standardErrorsOfBeta, rSquared, adjustedRSquared, tStats, pValues, useIntercept);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy