All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.statistics.descriptive.InterpolationQuantileMethod Maven / Gradle / Ivy

/*
 * Copyright (C) 2015 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.statistics.descriptive;

import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.DoubleArrayMath;
import com.opengamma.strata.collect.array.DoubleArray;

/**
 * Implementation of a quantile estimator.
 * 

* The quantile is linearly interpolated between two sample values. The probability dimension * pi on which the interpolation take place (X axis) varies between actual implementation * of the abstract class. For each probability pi, the cumulative distribution value is * the sample value with same index. The index used above are the Java index plus 1. *

* Reference: Value-At-Risk, OpenGamma Documentation 31, Version 0.1, April 2015. */ public abstract class InterpolationQuantileMethod extends QuantileCalculationMethod { @Override protected QuantileResult quantile(double level, DoubleArray sample, boolean isExtrapolated) { ArgChecker.isTrue(level > 0, "Quantile should be above 0."); ArgChecker.isTrue(level < 1, "Quantile should be below 1."); int sampleSize = sampleCorrection(sample.size()); double adjustedLevel = checkIndex(level * sampleSize + indexCorrection(), sample.size(), isExtrapolated); double[] order = createIndexArray(sample.size()); double[] s = sample.toArray(); DoubleArrayMath.sortPairs(s, order); int lowerIndex = (int) Math.floor(adjustedLevel); int upperIndex = (int) Math.ceil(adjustedLevel); double lowerWeight = upperIndex - adjustedLevel; double upperWeight = 1d - lowerWeight; return QuantileResult.of( lowerWeight * s[lowerIndex - 1] + upperWeight * s[upperIndex - 1], new int[]{(int) order[lowerIndex - 1], (int) order[upperIndex - 1]}, DoubleArray.of(lowerWeight, upperWeight)); } @Override protected QuantileResult expectedShortfall(double level, DoubleArray sample) { ArgChecker.isTrue(level > 0, "Quantile should be above 0."); ArgChecker.isTrue(level < 1, "Quantile should be below 1."); int sampleSize = sampleCorrection(sample.size()); double fractionalIndex = level * sampleSize + indexCorrection(); double adjustedLevel = checkIndex(fractionalIndex, sample.size(), true); double[] order = createIndexArray(sample.size()); double[] s = sample.toArray(); DoubleArrayMath.sortPairs(s, order); int lowerIndex = (int) Math.floor(adjustedLevel); int upperIndex = (int) Math.ceil(adjustedLevel); int[] indices = new int[upperIndex]; double[] weights = new double[upperIndex]; double interval = 1d / (double) sampleSize; weights[0] = interval * (Math.min(fractionalIndex, 1d) - indexCorrection()); double losses = s[0] * weights[0]; for (int i = 0; i < lowerIndex - 1; i++) { losses += 0.5 * (s[i] + s[i + 1]) * interval; indices[i] = (int) order[i]; weights[i] += 0.5 * interval; weights[i + 1] += 0.5 * interval; } if (lowerIndex != upperIndex) { double lowerWeight = upperIndex - adjustedLevel; double upperWeight = 1d - lowerWeight; double quantile = lowerWeight * s[lowerIndex - 1] + upperWeight * s[upperIndex - 1]; losses += 0.5 * (s[lowerIndex - 1] + quantile) * interval * upperWeight; indices[lowerIndex - 1] = (int) order[lowerIndex - 1]; indices[upperIndex - 1] = (int) order[upperIndex - 1]; weights[lowerIndex - 1] += 0.5 * (1d + lowerWeight) * interval * upperWeight; weights[upperIndex - 1] = 0.5 * upperWeight * interval * upperWeight; } if (fractionalIndex > sample.size()) { losses += s[sample.size() - 1] * (fractionalIndex - sample.size()) * interval; indices[sample.size() - 1] = (int) order[sample.size() - 1]; weights[sample.size() - 1] += (fractionalIndex - sample.size()) * interval; } return QuantileResult.of(losses / level, indices, DoubleArray.ofUnsafe(weights).dividedBy(level)); } //------------------------------------------------------------------------- /** * Internal method returning the index correction for the specific implementation. * * @return the correction */ abstract double indexCorrection(); /** * Internal method returning the sample size correction for the specific implementation. * * @param sampleSize the sample size * @return the correction */ abstract int sampleCorrection(int sampleSize); /** * Generate an index of doubles. *

* Creates an index of doubles from 1.0 to a stipulated number, in increments of 1. * * @param indexArrayLength length of index array to be created * @return array of indices */ private double[] createIndexArray(int indexArrayLength) { double[] indexArray = new double[indexArrayLength]; for (int i = 0; i < indexArrayLength; i++) { indexArray[i] = i; } return indexArray; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy