com.opengamma.strata.math.impl.statistics.descriptive.InterpolationQuantileMethod Maven / Gradle / Ivy
/*
* Copyright (C) 2015 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.statistics.descriptive;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.DoubleArrayMath;
import com.opengamma.strata.collect.array.DoubleArray;
/**
* Implementation of a quantile estimator.
*
* The quantile is linearly interpolated between two sample values. The probability dimension
* pi on which the interpolation take place (X axis) varies between actual implementation
* of the abstract class. For each probability pi , the cumulative distribution value is
* the sample value with same index. The index used above are the Java index plus 1.
*
* Reference: Value-At-Risk, OpenGamma Documentation 31, Version 0.1, April 2015.
*/
public abstract class InterpolationQuantileMethod
extends QuantileCalculationMethod {
@Override
protected QuantileResult quantile(double level, DoubleArray sample, boolean isExtrapolated) {
ArgChecker.isTrue(level > 0, "Quantile should be above 0.");
ArgChecker.isTrue(level < 1, "Quantile should be below 1.");
int sampleSize = sampleCorrection(sample.size());
double adjustedLevel = checkIndex(level * sampleSize + indexCorrection(), sample.size(), isExtrapolated);
double[] order = createIndexArray(sample.size());
double[] s = sample.toArray();
DoubleArrayMath.sortPairs(s, order);
int lowerIndex = (int) Math.floor(adjustedLevel);
int upperIndex = (int) Math.ceil(adjustedLevel);
double lowerWeight = upperIndex - adjustedLevel;
double upperWeight = 1d - lowerWeight;
return QuantileResult.of(
lowerWeight * s[lowerIndex - 1] + upperWeight * s[upperIndex - 1],
new int[]{(int) order[lowerIndex - 1], (int) order[upperIndex - 1]},
DoubleArray.of(lowerWeight, upperWeight));
}
@Override
protected QuantileResult expectedShortfall(double level, DoubleArray sample) {
ArgChecker.isTrue(level > 0, "Quantile should be above 0.");
ArgChecker.isTrue(level < 1, "Quantile should be below 1.");
int sampleSize = sampleCorrection(sample.size());
double fractionalIndex = level * sampleSize + indexCorrection();
double adjustedLevel = checkIndex(fractionalIndex, sample.size(), true);
double[] order = createIndexArray(sample.size());
double[] s = sample.toArray();
DoubleArrayMath.sortPairs(s, order);
int lowerIndex = (int) Math.floor(adjustedLevel);
int upperIndex = (int) Math.ceil(adjustedLevel);
int[] indices = new int[upperIndex];
double[] weights = new double[upperIndex];
double interval = 1d / (double) sampleSize;
weights[0] = interval * (Math.min(fractionalIndex, 1d) - indexCorrection());
double losses = s[0] * weights[0];
for (int i = 0; i < lowerIndex - 1; i++) {
losses += 0.5 * (s[i] + s[i + 1]) * interval;
indices[i] = (int) order[i];
weights[i] += 0.5 * interval;
weights[i + 1] += 0.5 * interval;
}
if (lowerIndex != upperIndex) {
double lowerWeight = upperIndex - adjustedLevel;
double upperWeight = 1d - lowerWeight;
double quantile = lowerWeight * s[lowerIndex - 1] + upperWeight * s[upperIndex - 1];
losses += 0.5 * (s[lowerIndex - 1] + quantile) * interval * upperWeight;
indices[lowerIndex - 1] = (int) order[lowerIndex - 1];
indices[upperIndex - 1] = (int) order[upperIndex - 1];
weights[lowerIndex - 1] += 0.5 * (1d + lowerWeight) * interval * upperWeight;
weights[upperIndex - 1] = 0.5 * upperWeight * interval * upperWeight;
}
if (fractionalIndex > sample.size()) {
losses += s[sample.size() - 1] * (fractionalIndex - sample.size()) * interval;
indices[sample.size() - 1] = (int) order[sample.size() - 1];
weights[sample.size() - 1] += (fractionalIndex - sample.size()) * interval;
}
return QuantileResult.of(losses / level, indices, DoubleArray.ofUnsafe(weights).dividedBy(level));
}
//-------------------------------------------------------------------------
/**
* Internal method returning the index correction for the specific implementation.
*
* @return the correction
*/
abstract double indexCorrection();
/**
* Internal method returning the sample size correction for the specific implementation.
*
* @param sampleSize the sample size
* @return the correction
*/
abstract int sampleCorrection(int sampleSize);
/**
* Generate an index of doubles.
*
* Creates an index of doubles from 1.0 to a stipulated number, in increments of 1.
*
* @param indexArrayLength length of index array to be created
* @return array of indices
*/
private double[] createIndexArray(int indexArrayLength) {
double[] indexArray = new double[indexArrayLength];
for (int i = 0; i < indexArrayLength; i++) {
indexArray[i] = i;
}
return indexArray;
}
}