com.opengamma.strata.math.impl.statistics.distribution.LaplaceDistribution Maven / Gradle / Ivy
/*
* Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.statistics.distribution;
import java.util.Date;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.math.impl.cern.MersenneTwister64;
import com.opengamma.strata.math.impl.cern.RandomEngine;
/**
* The Laplace distribution is a continuous probability distribution with probability density function
* $$
* \begin{align*}
* f(x)=\frac{1}{2b}e^{-\frac{|x-\mu|}{b}}
* \end{align*}
* $$
* where $\mu$ is the location parameter and $b$ is the scale parameter. The
* cumulative distribution function and its inverse are defined as:
* $$
* \begin{align*}
* F(x)&=
* \begin{cases}
* \frac{1}{2}e^{\frac{x-\mu}{b}} & \text{if } x < \mu\\
* 1-\frac{1}{2}e^{-\frac{x-\mu}{b}} & \text{if } x\geq \mu
* \end{cases}\\
* F^{-1}(p)&=\mu-b\text{ sgn}(p-0.5)\ln(1-2|p-0.5|)
* \end{align*}
* $$
* Given a uniform random variable $U$ drawn from the interval $(-\frac{1}{2}, \frac{1}{2}]$,
* a Laplace-distributed random variable with parameters $\mu$ and $b$ is given by:
* $$
* \begin{align*}
* X=\mu-b\text{ sgn}(U)\ln(1-2|U|)
* \end{align*}
* $$
*
*/
public class LaplaceDistribution implements ProbabilityDistribution {
// TODO need a better seed
private final RandomEngine _engine;
private final double _mu;
private final double _b;
/**
* Creates an instance.
*
* @param mu The location parameter
* @param b The scale parameter, greater than zero
*/
public LaplaceDistribution(double mu, double b) {
this(mu, b, new MersenneTwister64(new Date()));
}
/**
* Creates an instance.
*
* @param mu The location parameter
* @param b The scale parameter, greater than zero
* @param engine A uniform random number generator, not null
*/
public LaplaceDistribution(double mu, double b, RandomEngine engine) {
ArgChecker.isTrue(b > 0, "b must be > 0");
ArgChecker.notNull(engine, "engine");
_mu = mu;
_b = b;
_engine = engine;
}
/**
* {@inheritDoc}
*/
@Override
public double getCDF(Double x) {
ArgChecker.notNull(x, "x");
return 0.5 * (1 + Math.signum(x - _mu) * (1 - Math.exp(-Math.abs(x - _mu) / _b)));
}
/**
* {@inheritDoc}
*/
@Override
public double getInverseCDF(Double p) {
ArgChecker.notNull(p, "p");
ArgChecker.isTrue(p >= 0 && p <= 1, "Probability must lie between 0 and 1 (inclusive)");
return _mu - _b * Math.signum(p - 0.5) * Math.log(1 - 2 * Math.abs(p - 0.5));
}
/**
* {@inheritDoc}
*/
@Override
public double getPDF(Double x) {
ArgChecker.notNull(x, "x");
return Math.exp(-Math.abs(x - _mu) / _b) / (2 * _b);
}
/**
* {@inheritDoc}
*/
@Override
public double nextRandom() {
double u = _engine.nextDouble() - 0.5;
return _mu - _b * Math.signum(u) * Math.log(1 - 2 * Math.abs(u));
}
/**
* Gets the location parameter.
*
* @return The location parameter
*/
public double getMu() {
return _mu;
}
/**
* Gets the scale parameter.
*
* @return The scale parameter
*/
public double getB() {
return _b;
}
@Override
public int hashCode() {
int prime = 31;
int result = 1;
long temp;
temp = Double.doubleToLongBits(_b);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(_mu);
result = prime * result + (int) (temp ^ (temp >>> 32));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
LaplaceDistribution other = (LaplaceDistribution) obj;
if (Double.doubleToLongBits(_b) != Double.doubleToLongBits(other._b)) {
return false;
}
return Double.doubleToLongBits(_mu) == Double.doubleToLongBits(other._mu);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy