All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.statistics.distribution.NonCentralChiSquaredDistribution Maven / Gradle / Ivy

/*
 * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.statistics.distribution;

import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.special.Gamma;

import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.math.MathException;
import com.opengamma.strata.math.impl.function.special.GammaFunction;

/**
 * The non-central chi-squared distribution is a continuous probability
 * distribution with probability density function
 * $$
 * \begin{align*}
 * f_r(x) = \frac{e^-\frac{x + \lambda}{2}x^{\frac{r}{2} - 1}}{2^{\frac{r}{2}}}\sum_{k=0}^\infty \frac{(\lambda k)^k}{2^{2k}k!\Gamma(k + \frac{r}{2})}
 * \end{align*}
 * $$
 * where $r$ is the number of degrees of freedom, $\lambda$ is the
 * non-centrality parameter and $\Gamma$ is the Gamma function ({@link
 * GammaFunction}).
 * 

* For the case where $r + \lambda > 2000$, the implementation of the cdf is taken from "An Approximation for the Noncentral Chi-Squared Distribution", Fraser et al. * (link). Otherwise, the algorithm is taken from "Computing the Non-Central Chi-Squared Distribution Function", Ding. */ // CSOFF: AbbreviationAsWordInName public class NonCentralChiSquaredDistribution implements ProbabilityDistribution { private final double _lambdaOverTwo; private final int _k; private final double _dofOverTwo; private final double _pStart; private final double _eps = 1e-16; /** * Creates an instance. * * @param degrees The number of degrees of freedom, not negative or zero * @param nonCentrality The non-centrality parameter, not negative */ public NonCentralChiSquaredDistribution(double degrees, double nonCentrality) { ArgChecker.isTrue(degrees > 0, "degrees of freedom must be > 0, have " + degrees); ArgChecker.isTrue(nonCentrality >= 0, "non-centrality must be >= 0, have " + nonCentrality); _dofOverTwo = degrees / 2.0; _lambdaOverTwo = nonCentrality / 2.0; _k = (int) Math.round(_lambdaOverTwo); if (_lambdaOverTwo == 0) { _pStart = 0.0; } else { double logP = -_lambdaOverTwo + _k * Math.log(_lambdaOverTwo) - Gamma.logGamma(_k + 1); _pStart = Math.exp(logP); } } private double getFraserApproxCDF(double x) { double s = Math.sqrt(_lambdaOverTwo * 2.0); double mu = Math.sqrt(x); double z; if (Double.doubleToLongBits(mu) == Double.doubleToLongBits(s)) { z = (1 - _dofOverTwo * 2.0) / 2 / s; } else { z = mu - s - (_dofOverTwo * 2.0 - 1) / 2 * (Math.log(mu) - Math.log(s)) / (mu - s); } return (new NormalDistribution(0, 1)).getCDF(z); } /** * {@inheritDoc} */ @Override public double getCDF(Double x) { ArgChecker.notNull(x, "x"); if (x < 0) { return 0.0; } if ((_dofOverTwo + _lambdaOverTwo) > 1000) { return getFraserApproxCDF(x); } double regGammaStart = 0; double halfX = x / 2.0; double logX = Math.log(halfX); try { regGammaStart = Gamma.regularizedGammaP(_dofOverTwo + _k, halfX); } catch (MaxCountExceededException ex) { throw new MathException(ex); } double sum = _pStart * regGammaStart; double oldSum = Double.NEGATIVE_INFINITY; double p = _pStart; double regGamma = regGammaStart; double temp; int i = _k; // first add terms below _k while (i > 0 && Math.abs(sum - oldSum) / sum > _eps) { i--; p *= (i + 1) / _lambdaOverTwo; temp = (_dofOverTwo + i) * logX - halfX - Gamma.logGamma(_dofOverTwo + i + 1); regGamma += Math.exp(temp); oldSum = sum; sum += p * regGamma; } p = _pStart; regGamma = regGammaStart; oldSum = Double.NEGATIVE_INFINITY; i = _k; while (Math.abs(sum - oldSum) / sum > _eps) { i++; p *= _lambdaOverTwo / i; temp = (_dofOverTwo + i - 1) * logX - halfX - Gamma.logGamma(_dofOverTwo + i); regGamma -= Math.exp(temp); oldSum = sum; sum += p * regGamma; } return sum; } /** * {@inheritDoc} * @return Not supported * @throws UnsupportedOperationException always */ @Override public double getInverseCDF(Double p) { throw new UnsupportedOperationException(); } /** * {@inheritDoc} * @return Not supported * @throws UnsupportedOperationException always */ @Override public double getPDF(Double x) { throw new UnsupportedOperationException(); } /** * {@inheritDoc} * @return Not supported * @throws UnsupportedOperationException always */ @Override public double nextRandom() { throw new UnsupportedOperationException(); } /** * Gets the number of degrees of freedom. * * @return The number of degrees of freedom */ public double getDegrees() { return _dofOverTwo * 2.0; } /** * Gets the non-centrality parameter. * * @return The non-centrality parameter */ public double getNonCentrality() { return _lambdaOverTwo * 2.0; } @Override public int hashCode() { int prime = 31; int result = 1; long temp; temp = Double.doubleToLongBits(_dofOverTwo); result = prime * result + (int) (temp ^ (temp >>> 32)); temp = Double.doubleToLongBits(_lambdaOverTwo); result = prime * result + (int) (temp ^ (temp >>> 32)); return result; } @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj == null) { return false; } if (getClass() != obj.getClass()) { return false; } NonCentralChiSquaredDistribution other = (NonCentralChiSquaredDistribution) obj; if (Double.doubleToLongBits(_dofOverTwo) != Double.doubleToLongBits(other._dofOverTwo)) { return false; } return Double.doubleToLongBits(_lambdaOverTwo) == Double.doubleToLongBits(other._lambdaOverTwo); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy