com.opengamma.strata.math.impl.statistics.distribution.NormalDistribution Maven / Gradle / Ivy
/*
* Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.statistics.distribution;
import java.util.Date;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.math.impl.cern.MersenneTwister64;
import com.opengamma.strata.math.impl.cern.Normal;
import com.opengamma.strata.math.impl.cern.Probability;
import com.opengamma.strata.math.impl.cern.RandomEngine;
/**
* The normal distribution is a continuous probability distribution with probability density function
* $$
* \begin{align*}
* f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}}
* \end{align*}
* $$
* where $\mu$ is the mean and $\sigma$ the standard deviation of
* the distribution.
*/
public class NormalDistribution implements ProbabilityDistribution {
private static final double ROOT2 = Math.sqrt(2);
// TODO need a better seed
private final double _mean;
private final double _standardDeviation;
private final Normal _normal;
/**
* @param mean The mean of the distribution
* @param standardDeviation The standard deviation of the distribution, not negative or zero
*/
public NormalDistribution(double mean, double standardDeviation) {
this(mean, standardDeviation, new MersenneTwister64(new Date()));
}
/**
* @param mean The mean of the distribution
* @param standardDeviation The standard deviation of the distribution, not negative or zero
* @param randomEngine A generator of uniform random numbers, not null
*/
public NormalDistribution(double mean, double standardDeviation, RandomEngine randomEngine) {
ArgChecker.isTrue(standardDeviation > 0, "standard deviation");
ArgChecker.notNull(randomEngine, "randomEngine");
_mean = mean;
_standardDeviation = standardDeviation;
_normal = new Normal(mean, standardDeviation, randomEngine);
}
/**
* {@inheritDoc}
*/
@Override
public double getCDF(Double x) {
ArgChecker.notNull(x, "x");
return DERFC.getErfc(-x / ROOT2) / 2;
}
/**
* {@inheritDoc}
*/
@Override
public double getPDF(Double x) {
ArgChecker.notNull(x, "x");
return _normal.pdf(x);
}
/**
* {@inheritDoc}
*/
@Override
public double nextRandom() {
return _normal.nextDouble();
}
/**
* {@inheritDoc}
*/
@Override
public double getInverseCDF(Double p) {
ArgChecker.notNull(p, "p");
ArgChecker.isTrue(p >= 0 && p <= 1, "Probability must be >= 0 and <= 1");
return Probability.normalInverse(p);
}
/**
* @return The mean
*/
public double getMean() {
return _mean;
}
/**
* @return The standard deviation
*/
public double getStandardDeviation() {
return _standardDeviation;
}
@Override
public int hashCode() {
int prime = 31;
int result = 1;
long temp;
temp = Double.doubleToLongBits(_mean);
result = prime * result + (int) (temp ^ (temp >>> 32));
temp = Double.doubleToLongBits(_standardDeviation);
result = prime * result + (int) (temp ^ (temp >>> 32));
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
NormalDistribution other = (NormalDistribution) obj;
if (Double.doubleToLongBits(_mean) != Double.doubleToLongBits(other._mean)) {
return false;
}
return Double.doubleToLongBits(_standardDeviation) == Double.doubleToLongBits(other._standardDeviation);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy