com.opengamma.strata.math.impl.statistics.leastsquare.LeastSquareResults Maven / Gradle / Ivy
/*
* Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.statistics.leastsquare;
import java.util.Objects;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;
/**
* Container for the results of a least square (minimum chi-square) fit, where some model (with a set of parameters), is calibrated
* to a data set.
*/
// CSOFF: JavadocMethod
public class LeastSquareResults {
private final double _chiSq;
private final DoubleArray _parameters;
private final DoubleMatrix _covariance;
private final DoubleMatrix _inverseJacobian;
public LeastSquareResults(LeastSquareResults from) {
this(from._chiSq, from._parameters, from._covariance, from._inverseJacobian);
}
public LeastSquareResults(double chiSq, DoubleArray parameters, DoubleMatrix covariance) {
this(chiSq, parameters, covariance, null);
}
public LeastSquareResults(
double chiSq,
DoubleArray parameters,
DoubleMatrix covariance,
DoubleMatrix inverseJacobian) {
ArgChecker.isTrue(chiSq >= 0, "chi square < 0");
ArgChecker.notNull(parameters, "parameters");
ArgChecker.notNull(covariance, "covariance");
int n = parameters.size();
ArgChecker.isTrue(covariance.columnCount() == n, "covariance matrix not square");
ArgChecker.isTrue(covariance.rowCount() == n, "covariance matrix wrong size");
//TODO test size of inverse Jacobian
_chiSq = chiSq;
_parameters = parameters;
_covariance = covariance;
_inverseJacobian = inverseJacobian;
}
/**
* Gets the Chi-square of the fit.
* @return the chiSq
*/
public double getChiSq() {
return _chiSq;
}
/**
* Gets the value of the fitting parameters, when the chi-squared is minimised.
* @return the parameters
*/
public DoubleArray getFitParameters() {
return _parameters;
}
/**
* Gets the estimated covariance matrix of the standard errors in the fitting parameters.
* Note only in the case of normally distributed errors, does this have any meaning
* full mathematical interpretation (See NR third edition, p812-816)
* @return the formal covariance matrix
*/
public DoubleMatrix getCovariance() {
return _covariance;
}
/**
* This a matrix where the i,jth element is the (infinitesimal) sensitivity of the ith fitting
* parameter to the jth data point (NOT the model point), when the fitting parameter are such
* that the chi-squared is minimised. So it is a type of (inverse) Jacobian, but should not be
* confused with the model jacobian (sensitivity of model data points, to parameters) or its inverse.
*
* @return a matrix
*/
public DoubleMatrix getFittingParameterSensitivityToData() {
if (_inverseJacobian == null) {
throw new UnsupportedOperationException("The inverse Jacobian was not set");
}
return _inverseJacobian;
}
@Override
public int hashCode() {
int prime = 31;
int result = 1;
long temp;
temp = Double.doubleToLongBits(_chiSq);
result = prime * result + (int) (temp ^ (temp >>> 32));
result = prime * result + _covariance.hashCode();
result = prime * result + _parameters.hashCode();
result = prime * result + (_inverseJacobian == null ? 0 : _inverseJacobian.hashCode());
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
LeastSquareResults other = (LeastSquareResults) obj;
if (Double.doubleToLongBits(_chiSq) != Double.doubleToLongBits(other._chiSq)) {
return false;
}
if (!Objects.equals(_covariance, other._covariance)) {
return false;
}
if (!Objects.equals(_inverseJacobian, other._inverseJacobian)) {
return false;
}
return Objects.equals(_parameters, other._parameters);
}
@Override
public String toString() {
return "LeastSquareResults [chiSq=" + _chiSq + ", fit parameters=" + _parameters.toString() +
", covariance=" + _covariance.toString() + "]";
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy