com.opengamma.strata.math.impl.statistics.leastsquare.LeastSquareWithPenaltyResults Maven / Gradle / Ivy
/*
* Copyright (C) 2014 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.statistics.leastsquare;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;
/**
* Hold for results of {@link NonLinearLeastSquareWithPenalty}.
*/
public class LeastSquareWithPenaltyResults extends LeastSquareResults {
private final double _penalty;
/**
* Holder for the results of minimising $\sum_{i=1}^N (y_i - f_i(\mathbf{x}))^2 + \mathbf{x}^T\mathbf{P}\mathbf{x}$
* WRT $\mathbf{x}$ (the vector of model parameters).
* @param chiSqr The value of the first term (the chi-squared)- the sum of squares between the 'observed' values $y_i$ and the model values
* $f_i(\mathbf{x})$
* @param penalty The value of the second term (the penalty)
* @param parameters The value of $\mathbf{x}$
* @param covariance The covariance matrix for $\mathbf{x}$
*/
public LeastSquareWithPenaltyResults(double chiSqr, double penalty, DoubleArray parameters,
DoubleMatrix covariance) {
super(chiSqr, parameters, covariance);
_penalty = penalty;
}
/**
* Holder for the results of minimising $\sum_{i=1}^N (y_i - f_i(\mathbf{x}))^2 + \mathbf{x}^T\mathbf{P}\mathbf{x}$
* WRT $\mathbf{x}$ (the vector of model parameters).
* @param chiSqr The value of the first term (the chi-squared)- the sum of squares between the 'observed' values $y_i$ and the model values
* $f_i(\mathbf{x})$
* @param penalty The value of the second term (the penalty)
* @param parameters The value of $\mathbf{x}$
* @param covariance The covariance matrix for $\mathbf{x}$
* @param inverseJacobian The inverse Jacobian - this is the sensitivities of the model parameters to the 'observed' values
*/
public LeastSquareWithPenaltyResults(double chiSqr, double penalty, DoubleArray parameters,
DoubleMatrix covariance, DoubleMatrix inverseJacobian) {
super(chiSqr, parameters, covariance, inverseJacobian);
_penalty = penalty;
}
/**
* Gets the value of the penalty.
* @return the penalty
*/
public double getPenalty() {
return _penalty;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy