com.opengamma.strata.math.rootfind.NewtonVectorRootFinder Maven / Gradle / Ivy
/*
* Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.rootfind;
import java.util.function.Function;
import com.opengamma.strata.collect.array.DoubleArray;
import com.opengamma.strata.collect.array.DoubleMatrix;
import com.opengamma.strata.math.MathException;
import com.opengamma.strata.math.impl.linearalgebra.SVDecompositionCommons;
import com.opengamma.strata.math.impl.rootfinding.newton.BroydenVectorRootFinder;
import com.opengamma.strata.math.linearalgebra.Decomposition;
/**
* Performs Newton-Raphson style multi-dimensional root finding.
*
* This uses the Jacobian matrix as a basis for some parts of the iterative process.
*/
public interface NewtonVectorRootFinder {
/**
* Obtains an instance of the Broyden root finder.
*
* This uses SV decomposition and standard tolerances.
*
* @return the root finder
*/
public static NewtonVectorRootFinder broyden() {
return new BroydenVectorRootFinder(new SVDecompositionCommons());
}
/**
* Obtains an instance of the Broyden root finder specifying the tolerances.
*
* This uses SV decomposition.
*
* @param absoluteTol the absolute tolerance
* @param relativeTol the relative tolerance
* @param maxSteps the maximum steps
* @return the root finder
*/
public static NewtonVectorRootFinder broyden(double absoluteTol, double relativeTol, int maxSteps) {
return new BroydenVectorRootFinder(absoluteTol, relativeTol, maxSteps, new SVDecompositionCommons());
}
/**
* Obtains an instance of the Broyden root finder specifying the tolerances.
*
* @param absoluteTol the absolute tolerance
* @param relativeTol the relative tolerance
* @param maxSteps the maximum steps
* @param decomposition the decomposition function
* @return the root finder
*/
public static NewtonVectorRootFinder broyden(
double absoluteTol,
double relativeTol,
int maxSteps,
Decomposition> decomposition) {
return new BroydenVectorRootFinder(absoluteTol, relativeTol, maxSteps, decomposition);
}
//-------------------------------------------------------------------------
/**
* Finds the root from the specified start position.
*
* This applies the specified function to find the root.
* Note if multiple roots exist which one is found will depend on the start position.
*
* @param function the vector function
* @param startPosition the start position of the root finder for
* @return the vector root of the collection of functions
* @throws MathException if unable to find the root, such as if unable to converge
*/
public abstract DoubleArray findRoot(Function function, DoubleArray startPosition);
/**
* Finds the root from the specified start position.
*
* This applies the specified function and Jacobian function to find the root.
* Note if multiple roots exist which one is found will depend on the start position.
*
* @param function the vector function
* @param jacobianFunction the function to calculate the Jacobian
* @param startPosition the start position of the root finder for
* @return the vector root of the collection of functions
* @throws MathException if unable to find the root, such as if unable to converge
*/
public abstract DoubleArray findRoot(
Function function,
Function jacobianFunction,
DoubleArray startPosition);
}