com.opengamma.strata.math.impl.function.special.JacobiPolynomialFunction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of strata-math Show documentation
Show all versions of strata-math Show documentation
Mathematic support for Strata
/*
* Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
*
* Please see distribution for license.
*/
package com.opengamma.strata.math.impl.function.special;
import com.opengamma.strata.collect.ArgChecker;
import com.opengamma.strata.collect.tuple.Pair;
import com.opengamma.strata.math.impl.function.DoubleFunction1D;
import com.opengamma.strata.math.impl.function.RealPolynomialFunction1D;
/**
*
*/
public class JacobiPolynomialFunction extends OrthogonalPolynomialFunctionGenerator {
@Override
public DoubleFunction1D[] getPolynomials(int n) {
throw new UnsupportedOperationException("Need values for alpha and beta for Jacobi polynomial function generation");
}
@Override
public Pair[] getPolynomialsAndFirstDerivative(int n) {
throw new UnsupportedOperationException("Need values for alpha and beta for Jacobi polynomial function generation");
}
/**
* Calculates polynomials.
* @param n the n value
* @param alpha the alpha value
* @param beta the beta value
* @return the result
*/
public DoubleFunction1D[] getPolynomials(int n, double alpha, double beta) {
ArgChecker.isTrue(n >= 0);
DoubleFunction1D[] polynomials = new DoubleFunction1D[n + 1];
for (int i = 0; i <= n; i++) {
if (i == 0) {
polynomials[i] = getOne();
} else if (i == 1) {
polynomials[i] = new RealPolynomialFunction1D(new double[] {(alpha - beta) / 2, (alpha + beta + 2) / 2});
} else {
int j = i - 1;
polynomials[i] =
(polynomials[j].multiply(getB(alpha, beta, j)).add(polynomials[j].multiply(getX()).multiply(getC(alpha, beta, j))
.add(polynomials[j - 1].multiply(getD(alpha, beta, j)))))
.divide(getA(alpha, beta, j));
}
}
return polynomials;
}
/**
* Calculates polynomials and derivative.
* @param n the n value
* @param alpha the alpha value
* @param beta the beta value
* @return the result
*/
public Pair[] getPolynomialsAndFirstDerivative(int n, double alpha, double beta) {
ArgChecker.isTrue(n >= 0);
@SuppressWarnings("unchecked")
Pair[] polynomials = new Pair[n + 1];
DoubleFunction1D p, dp, p1, p2;
for (int i = 0; i <= n; i++) {
if (i == 0) {
polynomials[i] = Pair.of(getOne(), getZero());
} else if (i == 1) {
double a1 = (alpha + beta + 2) / 2;
polynomials[i] =
Pair.of((DoubleFunction1D) new RealPolynomialFunction1D(new double[] {(alpha - beta) / 2, a1}),
(DoubleFunction1D) new RealPolynomialFunction1D(new double[] {a1}));
} else {
int j = i - 1;
p1 = polynomials[j].getFirst();
p2 = polynomials[j - 1].getFirst();
DoubleFunction1D temp1 = p1.multiply(getB(alpha, beta, j));
DoubleFunction1D temp2 = p1.multiply(getX()).multiply(getC(alpha, beta, j));
DoubleFunction1D temp3 = p2.multiply(getD(alpha, beta, j));
p = (temp1.add(temp2).add(temp3)).divide(getA(alpha, beta, j));
dp = p.derivative();
polynomials[i] = Pair.of(p, dp);
}
}
return polynomials;
}
private double getA(double alpha, double beta, int n) {
return 2 * (n + 1) * (n + alpha + beta + 1) * (2 * n + alpha + beta);
}
private double getB(double alpha, double beta, int n) {
return (2 * n + alpha + beta + 1) * (alpha * alpha - beta * beta);
}
private double getC(double alpha, double beta, int n) {
double x = 2 * n + alpha + beta;
return x * (x + 1) * (x + 2);
}
private double getD(double alpha, double beta, int n) {
return -2 * (n + alpha) * (n + beta) * (2 * n + alpha + beta + 2);
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy