All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.opengamma.strata.math.impl.integration.GaussLegendreQuadratureIntegrator1D Maven / Gradle / Ivy

There is a newer version: 2.12.46
Show newest version
/*
 * Copyright (C) 2009 - present by OpenGamma Inc. and the OpenGamma group of companies
 *
 * Please see distribution for license.
 */
package com.opengamma.strata.math.impl.integration;

import java.util.function.Function;

import com.opengamma.strata.collect.ArgChecker;

/**
 * Gauss-Legendre quadrature approximates the value of integrals of the form
 * $$
 * \begin{align*}
 * \int_{-1}^{1} f(x) dx
 * \end{align*}
 * $$
 * The weights and abscissas are generated by {@link GaussLegendreWeightAndAbscissaFunction}.
 * 

* The function to integrate is scaled in such a way as to allow any values for the limits of the integrals. */ public class GaussLegendreQuadratureIntegrator1D extends GaussianQuadratureIntegrator1D { private static final Double[] LIMITS = new Double[] {-1., 1.}; private static final GaussLegendreWeightAndAbscissaFunction GENERATOR = new GaussLegendreWeightAndAbscissaFunction(); /** * @param n The number of sample points to be used in the integration, not negative or zero */ public GaussLegendreQuadratureIntegrator1D(int n) { super(n, GENERATOR); } @Override public Double[] getLimits() { return LIMITS; } /** * {@inheritDoc} * To evaluate an integral over $[a, b]$, a change of interval must be performed: * $$ * \begin{align*} * \int_a^b f(x)dx * &= \frac{b - a}{2}\int_{-1}^1 f(\frac{b - a}{2} x + \frac{a + b}{2})dx\\ * &\approx \frac{b - a}{2}\sum_{i=1}^n w_i f(\frac{b - a}{2} x + \frac{a + b}{2}) * \end{align*} * $$ */ @Override public Function getIntegralFunction(Function function, Double lower, Double upper) { ArgChecker.notNull(function, "function"); ArgChecker.notNull(lower, "lower"); ArgChecker.notNull(upper, "upper"); double m = (upper - lower) / 2; double c = (upper + lower) / 2; return new Function() { @Override public Double apply(Double x) { return m * function.apply(m * x + c); } }; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy